Anew STAR is born

STC announces a new AM VHF version of the STAR Mobile Radio Telephone series.

The new Star AM7 is designed expressly for British VHF bands. It is completely solid state and meets the latest Ministry of Posts and Telecommunications 12.5 kHz specifications. It incorporates the outstanding features that are making the Star UHF range so successful, combining excellent performance with elegant appearance and outstanding speech qualities. Star
mobile equipment has no relays or moving parts.
For more information about the Star AM7 or Star UHF series, post the coupon today.

STC Mobile Radio Telephones Ltd., New Southgate, London N. 11
Tel: 01-3681200. Telex: 261912.

The beginning

of abeautiful
 our new instrument designs the shakes.

Every new Marconi design is subjected to environmental tests, covering climatic extremes, vibration, bump and mechanical endurance conditions, simulating the worst it is ever likely to meet in practice. The sort of treatment that makes most of our competitors' designs look very woebegone (we know, because we've tried them).
can't pass these tests is corrected - and goes through the process all over again. Hard on our engineers. Hard on our designers. But much better than using our customers as our test bed. M.I. builds in reliability to make every instrument a friend for a long and trouble-free life.
Send for 'Environmental Testing at MI' and see what we mean.

From L toX-band for marine, airborne and ground radar

The standard range of EEV duplexer components covers applications from L to X-band marine, airborne and ground radar systems. TR cells, TB cells, pre-TR cells, solid state limiters, monitor diodes... whatever your requirement, in narrowband, broadband or tunable types, EEV have it. Or, if it's a 'special' you need, we can almost certainly make it.

The precision manufacture of duplexers forms only part of EEV's massive experience in the whole field
of radar. And we have delivery and service to match our capability.

If you would like a copy of the EEV guide 'Duplexer Devices'-or if you are interested in a particular com-ponent-then please post the coupon.

English Electric Valve Co. Ltd. Chelmsford. Essex England. Telephone: 0245 61777. Telex: 99103 Grams: Enelectico Chelmsford

see EEV's duplexer devices.

Product	Type No.	Band	Frequency range (MHz)	Peak power (kW)	To: English Electric Valve Co. Lid., Chelmsford, Essex, England. Please send a copy of 'Duplexer Devices'. I am interested in a device with the following parameters:
Pre TR cells	BS834	-	2000-12000	2500	
	BS870	L	1240-1370	2500	Frequency__Power_Typo
TR cells	BS456	S	2850-3050	1250	Name \& Position
	BS824	S	2700-3100	250	
	BS856	C	5300-5700	250	Company
	BS156	x	9000-9600	200	Address
	BS452	X	9310-9510	100	
	BS810	X	9250-9550	75	
TB cell	BS310	X	9375	5-200	
TR Limiter cell	BS814	X	9000-9700	200	Tel. exchange or code
Solid state microwave switches	BS392	S	$\begin{aligned} & 2925-3075 \\ & \text { any } 100 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	Number Ext.
	BS460	X			ENGLISH ELECTRICVALVE COLTD

TRIO's New JR-310 SSB Professional Perfection for Amateur Enjoyment

JR-310

SSB COMMUNICATIONS RECEIVER

* High-stability VFO of 2 FET's and 2 transistors and easily handles QSO's for hours. * Precision double gear dial-a TRIO innovation -with linear frequency variable capacitor. Possible to get finer reading 1 KHz . One dial rotation covers 25 KHz , makes SSB demodulation easier. * Frequency range covers entire amateur band from 3.5 MHz to 29.7 MHz . One-touch selection system switches bands. WWV reception of 15 MHz possible. $* \mathrm{MHz}$ band circuit structure patterned on Collins type double conversion system so first oscillation is t, crystal control, second local oscillation by VFO.

SPECIFICATIONS OF JR-310

* FREQUENCY RANGE: $3 \cdot 5 \cdot 29.7 \mathrm{MHz}$ (7 Bands)
* SENSITIVITY: $1 \mu \mathrm{~V}$ (at 10 dB ' S / N)
* IMAGE RATIO: More than 50 dB
* FREQUENCY STABILITY: $\pm 2 \mathrm{KHz}$ in $1-60 \mathrm{~min}$. after switching on, subsequently within 100 Hz per 30 min . * Dimensions: $13^{\prime \prime}(\mathrm{W}), 7 \cdot 3 / 32^{\prime \prime}(\mathrm{H}), 12 \cdot 3 / 16^{\prime \prime}(\mathrm{D})$.
* Communications. Spea
use with the 9R.59DE
* Dimensions: $3 \cdot 9 / 16^{\prime \prime}(W), 7-1 / 8^{\prime \prime}(H), 5-3 / 16^{\prime \prime}(D)$.
 COMMUNICATION SPEAKER
ned for

BUILT IN MECHANICAL
FILTER 8 TUBES COMMUNICATION RECEIVER

* A mechanical filter enabling superb selectivity with ordinary IF trans formers. * Frequency Range: 550 KHz to 30 MHz (4 Bands) * Sensi tivity: $2 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ Ratio (at 10 MHz) * Selectivity: $\pm 5 \mathrm{KHz}$ at
$-60 \mathrm{~dB}\left(\pm 1.3 \mathrm{kHz} \mathrm{a}^{ \pm}-6 \mathrm{~dB}\right)$. When using the Mechanical Filter * Dimensions: Width $15^{\prime \prime}$, Height $7^{\prime \prime}$, Depth $10^{\prime \prime}$

-2
the sound approach to qualin.
TRIO
TRIO ELECTRONICS.INC.

TRIO-KENWOOD ELECTRONICS S.A. 160 Ave., Brugmann, Bruxelles 6, Belgium

You can view X-ray pictures in daylight using only a 5 micro-Röntgen dosage

What would it mean to you? An X-ray picture that is so bright you can view it in direct daylight as it happens. EEV's Image Isocon is now being used in X -ray equipment for this very purpose reducing X-ray dosages to as little as 5 microRöntgens, allowing longer exposure times for 'live' X-ray picture study, saving time by eliminating the need for operators' eyes to become 'dark-adapted'.

The Image Isocon is so sensitive that it can
convert a very low dosage-level picture to a bright, clear picture on a cathode-ray tube. This in turn means simple direct-from-screen photography.

The Image Isocon is another product of EEV advanced tube technology. For complete data, please post the coupon.

English Electric Valve Co Ltd Chelmsford, Essex, England. Telephone: 024561777. Telex:99103. Grams: Enelectico Chelmsford.

with the EEV Image Isocon

Make the most of soundsilently with the new Garrard SL.95B

- A Garrare gives yoj the perfect settirg for music - silerce
With Garrard all scu hear is t-e musio
The new Garıard SL.95B is a suparble eng neered tra scriftion zurn able with the addec jacil ty of aulomatic دlayrg
The SL95B features the cons ant-spesc Garrard Sy achro-_A.B molar and incorsoretes:
- Cue and pelse facility
- Low rescnanze wood and 三luminiumpic<-uparn
- Gimoal-rype fick-up arm Jivots
- Sidə-in cart-iJge carrier
- Lalibrated pick-up arm bias comjensetion
- Ca ibrated tine stylus-ijrse edjustizent
- Automaic play of sing e records
- Styling of elazance and =istinctior

Hard-woos base and rigid clझar Jlas ic coser available as optional extras.

And this is what indepardent cpirion said about tre SL.95. the immediate p ececessor 3 th \geqslant SL-953 have lested t for won. futer and rumble and fcund them toc low to be neasurec with any confidence. In every way I have tried b injede its working. I have failsc
'I greatly adm re the cueing teviss and I vould tot dream of setting my own mart al clumsiness against the de icacy vith which the autonatic mechanism plis down the st,lls in the groove. This is near perfection "Perzy Wisor Audio Record Review. Aujust 63

Garrard Engireering Lim 'ed Ne weastle Streel, Swindon, Wiltshire. Eng and

UHF klystron efficiency? You can rely on it with EEV.

For reliable UHF klystron performance choose from the largest range available today The EEV range. $40 \mathrm{~kW}, 25 \mathrm{~kW}, 10 \mathrm{~kW}, 7 \mathrm{~kW}$ and 5 kW .

Each one offers economy and ease of use, solid-state compatibility and, above all, efficiency-even at low drives.

Broadcasting authorities around the world are using

EEV klystrons for UHF television - proving their operational flexibility, reliability and efficiency in climatic conditions as varied as those of Australia and Finland. To get the full facts about the tube you need, please post the coupon. English Electric Valve Co Ltd, Chelmsford, Essex, England. Telephone 024561777. Telex:99103. Grams:Enelectico Chelmsford

To: English Electric Valve Co Lid, Chelmsford, Essex, England Please send EEV data on UHF television amplifier klystrons. I am interested in a klystron with the following parameters:
Frequency \qquad Bandwidth \qquad Power \qquad
Name \& position

Company

WW- 012 FOR FURTHER DETALLS

Effective elimination of electro-magnetic interference produced by ancillary electrical equipment is of paramount importance in present day communication and signalling systems. Erie Broadband Filters and Filtercons provide the highest attenuation, at the lowest cost, in the smallest package. In less than 1 cubic centimetre they can offer, typically, an insertion loss of 80 dB minimum in the range 1.50 kHz to over 10 GHz .

A wide range of Erie Filter Devices, in coaxial and multi-section designs, with $\mathrm{Pi}, \mathrm{T}, \& \mathrm{~L}$ networks, provide for reliable operation over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (in some cases up to $150^{\circ} \mathrm{C}$), with excellent performance to beyond 10 GHz . Voltage ratings 50-2,500 volts d.c.
Used the World over in Aircraft, Spacecraft, Ships, Land Vehicles and Static Installations. Send for the Filter Devices Technical Bro-
chure, and learn about the kind of Filters that

ELECTRONICS
LIMITED

have been approved for use in Airborne Weapons and other professional equipments.

ERIE ELECTRONICS LTD.
Great Yarmouth, Norfolk. Telephone: 04934011.
Telex: 97421.

Experience:

Since the beginning of industrial r.f. heating, EEV have been the pace-setters. With this experience, backed by our equal know-how in the transmitter valve field, is it any wonder that we are so well known for power triodes?

EEV make power triodes for industrial heating applications from 1 kW up to 250 kW . They are all conservatively rated and realistically designed to give good length of life. Whatever your application -for drying paper, baking biscuits, welding plastic,
treating metal-r.f. heating the EEV way is economical and dependable.

Our sales engineers are at your service to discuss designs and to recommend the best tube or combination of tubes for your particular application.

For full details just post the coupon or telephone Mr. M.J. Pitt.

English Electric Valve Co Ltd. Chelmsford Essex. England. Telephone: 024561777 . Telex 99103. Grams: Enelectico Chelmsford

> the vital factor of EEV's industrial r.f. heating power triode range

SHIBADEN TELETON From Dixons complete CCTV range we are proud to bring you...

Britain's leading CCTV System-IITE

More specification at lower cost, sums up the Dixons ITC link up. Your budget goes further and your CCTV system grows in scope when you specify ITC. Dixons buyers have negotiated factory prices in exchange for firm forward ordering and you gain two ways. You pay less and Dixons deliver from London stocks. With ITC you'll be using some of the most advanced electronic circuitry with proven standards that will keep on going through the years.

Dixons CCTV

Distributive stockists and importers of Closed Circuit Television Systems. A Division of Dixons Technical Lid.

We trust we will be forgiven by the makers of the world famous 57 varieties for our claim that ANDERS MEANS METERS. When it comes to variety, the Anders range of meters is the largest and most comprehensive in the country - Panel Mounting and Portable ... Moving Coil, Moving Iron, Electrostatic, Thermo-Couple, Motammeters,

Fiequency Meters. Wattmeters, Contact Meters . . . plus Current transformers, Shunts and other ancillary items. Many requirements can be supplied off the shelf. Fast delivery of non-standard instruments, in small or large quantities.

AInders electronics limited

48/56 Bayham Place, Bayham Street, London, N.W. 1 Telephone 01-387 ©092.

Manufacturers and distributors of Electrical Measuring Instruments and Electronic Equipment. Sole U.K. distributors of FRAHM Resonant Reed Frequency meters and Tachometers.

TS Distortionless Servomechanical
Stabilisers provide high-speed, accurate stabilisation without distortion of waveform. Accuracy $\pm 0 \cdot 25 \%$. Correction speed up to 60/100 volts per sec. Unaffected by load, frequency or power factor variations. 1 to 120 kVA single phase and up to 360 kVA three phase.
BTR Solid-State Electronic Stabilisers give high accuracy with extremely low distortion and no moving parts. Basic models : $\pm 0.3 \%$ accuracy, 3% max. distortion without any filtering. Unaffected by load or frequency variations. Filtered models also available. 400 VA to 10 kVA .

Claude Lyons

CVR Constant Voltage Regulators offer considerable advantages over conventional constant voltage transformers at remarkably low cost. $\pm 0.3 \%$ accuracy, 3.5% max. distortion without any filtering. Unaffected by load or frequency variations. 360, 600 and 1200 VA.

The range also includes VB tap-changing types and PST high-current stabilised d.c. supplies.

For full details write to Publicity Department. Hoddesdon.

CLAUDE LYONS

Claude Lyons Limited
Hoddesdon, Herts. Hoddesdon 67161 Telex 22724 76 Old Hall Street. Liverpool L3 9PX. 051-2271761 Telex 62181

FR $=-70$ AMBITIOUS ENGINEERS

Have you sent for your copy?

ENGINEERING OPPORTUNITIES is a highly informative 164 -page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification and outlines a wonderful range of modern Home Stuidy Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio \& Electronics Courses, administered by our Specialist Electronics Training Divisionexplains the benefits of our Appointments Dept. and shows you how to qualify for five years' promotion in one year.

SATISFACTION OR REFUND OF FEE

Whatever your age or experience, you cannot afford to miss reading this famous book. Send for your copy of "ENGINEERING OPPORTUNITIES" today-FREE.

WHICH IS YOUR PET SUBJECT?

Radio
Television
Electronics
Electrical Mechanical

Civil

Production
Automobile
Aeronautical Plastics Building Draughtsmanship B.Sc.

City \& Guilds Gen. Cert. of Education etc., etc.

BRITISH INSTITUTE

OF ENGINEERING TECHNOLOGY
(Dept. 3038), Aldermaston Court, Aldermaston, Berkshire

PRACTICAL EQUIPMENT

Basic Practical and Theor etic Courses for beginners in A.M.I.E.R.E. City \& Guilds Radio Amateur's Exam. R.T.E.B. Certificate P.M.G. Certificate Practical Radio Radio Stelevision Servicing
Practical Electronics Automation

NCIUDING
TOOLS!

The xpecialixt Electronies Division of B.I.E.T. NO H offers you a real laborutory training at home with prachical equipment. Ask for details.

POSTCOUPON NOW:

Please send me your FREE 164-page "ENGINEERING OPPORTUNITIES"
(Write if you prefer not to cut page)
NAME. .
ADDRESS................................
\qquad
SUBJECT OR EXAMTHAT INTERESTS ME

Post Haste

Drop us a line and you'll see. Morganite Filmet ${ }^{*}$ resistors reach you faster. Because development batches of standard Filmet *are ready on the shelf right now. Waiting on your 'phonę call They come in three basic sizes, and they're not bound by the usual limitations of metal film resistors at all. Witness temperature coefficients like 15 p.p.m. $/{ }^{\circ} \mathrm{C}$.

Selection tolerances as

 tight as $\pm 0.1 \%$.What's more, we build the same kind of stability into special orders, too. We don't see why nonstandard customers should get sub-standard service just because their supplier doesn't like putting his production line out of gear In our books, made-tomeasure resistors should be
made to your measure, not ours. With the performance you specify.
And we don't make you pay through the nose when they arrive, either. You'l see what we mean when you ask for our price list covering the standard Filmet range. Call us any time. and we'll send you a copy by return of post.
First class, of course.

MORGANITE RESISTORS LIMITED

Anew range from J..Lloyd linstruments...

From whom?

J. J. Lloyd Instruments Limited

You may already know all about us, but whether you do or not come and see our new instruments at the I.E.A.
Our product range includes L, C and R Decade Boxes, variable Mutual Inductors, Standard Resistors, Conductance Boxes, a.c. and d.c: 'Potentiometers, Electronic Galvanometers, power loading Resistors and Capacitors, Dynamometers and an interesting range of instruments developed specially for educational laboratories,

D.D. Lldoyd Insifumemis Limmited
 Brook Avenue, Warsash, Southampton, SO3 6HP. Tel: Locks Heath 4221

(STD Code 048-95-4221)

EAGLE INTERCOMS

There's a vast market here - in the office, the factory, the work-
 use an intercom - it And here's the reliable range you can push! From an inexpensive set a young couple can buy for baby-listening to a full-scale 12 -station model You'll get quick delivery, too - and you'll need it, if you display the Eagle Intercoms with their powerful colour showcards! And another attractive thing about the range of Eagle Products is the rate at which fast-selling new items are added! See our new catalogue, which proves the point! Send the coupon to the Sole

Distributors of Eagle Products B. Adler and Sons (Radio) Limited, Coptic Street, London, W.C. 1 or quicker still, dial 01-636 9606. ask for Carol Hill she'll send you one today!

On Goldring's 850 cartridge, even the price is magnetic.

Fact : magnetic cartridges are more compatible with transistor amplifiers than crystal cartridges. Fiction : magnetic cartridges are too expensive to warrant use with any but the more sophisticated units.
Now, there is a magnetic cartridge at a price within easy reach.
The 850 assures you of true tracking, superior sound quality and minimal groove destruction. But unlike most magnetic cartridges, its British. It's made by Goldring !
At $£ 6 / 10 / 0$, that's really magnetic.

Vortexion

This is a high fidelity amplifier (0.3\% intermodulation distortion) using the circuit of our 100% reliable- 100 Watt Amplifier (no failures to date) with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer amplifier, again fully protected against overload and completely free from radio breakthrough. The mixer is arranged for 3-30/60 Ω balanced line microphones, and a high impedance line or gram. input followed by bass and treble controls. 100 volt balanced line output.

THE VORTEXION 50/70 WATT ALL SILICON AMPLIFIER WITH BUILT-IN 4-WAY MIXER USING F.E.T.s.

100 WATT ALL SILICON AMPLIFIER. A high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. In put 0.4 V on 100 K ohms.

THE 100 WATT MIXER AMPLI-

FIER with specification as above is here combined with a 4 channel F.E.T. mixer, 3 mic. 1 gram with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and automatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms- 15 ohms and 100 volt line. Bass and treble controls fitted.
Models available with 1 gram and 2 low mic. inputs. 1 gram and 3 low mic. inputs or 4 low mic. inputs.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s} \pm 1 \mathrm{~dB}$. Less than 0.2% distortion at $1 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is over 120 watt on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.

ELECTRONIC MIXERS. Various types of mixers available. 3-channel with accuracy within 1 dB Peak Programme Meter. 4-6-8-10 and 12-way mixers. Twin 2, 3, 4 and 5 channel stereo. Built-in screened supplies. Balanced line mic. input. Outputs: 0.5 V at 20 K or alternative 1 mW at 600 ohms, balanced, unbalanced or floating.

The sweet sound of saving

.... can be heard more and more
if you listen in the many Schools, Hospitals, Factories and Hotels where S.N.S. Radio Rack Consoles are providing the music.

Our unique Crystal Controlled Radio Tuners, integrated with our fully transistorised amplifiers, mean that we can provide all the programmes you want, AM or FM - 12 Watts, 40 Watts or 100 Watts RMS - in a console half the height of ordinary racks.

Not only that, you won't find controls to adjust - sorry about that, knob twiddlers - and we all know that means less unnecessary service calls.

It all adds up to a triple saving to you - Size, Service Calls, and Initial Cost.

We also manufacture Radio Microphones and Loudspeaking Intercom Systems. For full details please contact

諸 S.N.S.

S.N.S. Communications Ltd. 851 Ringwood Road.
Bournemouth.
Phone: Northbourne 4845

- Low noise - High reliability - Hot moulded High stability
- $\frac{1}{32} \mathrm{~W}, \frac{1}{8} \mathrm{~W}, \frac{1}{4} \mathrm{~W}, \frac{1}{2} \mathrm{~W}$,

1 w and 2 watts

- Competitive prices
- Realistic delivery
- Tolerance $\pm 5 \%$
- Metal film precision types tolerance 0.1 to 1%
For further information contact IMPECTRON LTD., 23-31, King Street, London, W.3. Telephone: 01-992 5388.

2Watt and 3Watt Professional IC Audio Amplifiers now available

These Plessey general purpose integrated circuit audio amplifiers are being used by a number of major equipment manufacturers throughout the country.

Through large scale production Plessey can now make these devices available to home constructors at reasonable prices.

Each circuit incórporates a preamplifier and a class $A-B$ power amplifier stage and needs only a minimum of external components.

Take a look at these specifications opposite ! These really outstanding Plessey IC audio amplifiers are immediately available off-the-shelf from our distributors listed below. Data application brochures (Price 1s. 9d. each) which include PC board layouts for mono and stereo amplifiers are obtainable from:

Farnell Electronic Components Ltd
Canal Rd, Leeds LS 12 2TU
Tel: Leeds 636311 Telex : 55147

Characteristic
Output power r.m.s.
Input impedance
Preamplifier
Main amplifier
Distortion
Preamplifier
Main amplifier
Frequency response Lower-3dB point Upper-3dB point
Operating voltage
Min. operating load

SL402A	SL403A
2W	3W
20 M !	20 M
100 M s	100 M s
0.1\%	0.1\%
0.3\%	0.3\%
$\begin{gathered} 20 \mathrm{~Hz} \\ 30 \mathrm{kHz} \end{gathered}$	$\begin{gathered} 20 \mathrm{~Hz} \\ 30 \mathrm{kHz} \end{gathered}$
$+14 \mathrm{~V}$	+18V
7.5 !	7.5 !

SDS (Portsmouth) Ltd
Hillsea Industrial Estate, Hillsea, Portsmouth, Hants
Tel : Portsmouth (0705) 62332 or 62180 Telex: 86114

PLESSEY

Cheney Manor Swindon Wiltshire England Telephone: Swindon (0793) 6251. Telex: 44375

Free Range

Morganite Resistors have plenty of stock on show. And we're only showing some of it here.
Say the word, and you can have samples of our entire range of Cermet Trimming Potentiometers - free and fast. In development batches that'll give you food for thought when you run them through your test routine. Before you do that, a word
of warning. You'll be disappointed if you expect anything dramatic to happen while you're testing our trimming potentiometers.
Our new, expanded cermet production set-up sees to that. Here components are checked for surface profile. then put under the microscope at anything up to 500 times life size. And the finished product runs an even
stricter gauntlet of tests. All of them are tough routines, too, but we reckon it's up to us to set the standards that keep us in front.
That goes for Morganite design as well. And Morganite research. Morganite delivery. Morganite prices. We mean to stay ahead on all counts. And guess who benefits? You.

MORGANITE RESISTORS LIMITED

Bede Industrial Estate, Jarrow, County Durham
Telephone : Jarrow 897771 Telex 53353

We can't, and don't, disregard current advancements in sophisticated electronics We can, and do, cater to an undiminishing requirement for, replacement valves from all quarters of Industry, Education and Research.
This requirement has been built up over many years past. So has Pinnacle

Pinnacle Electronics Limited

Achilles Street, New Cross, London, S.E.14.
Phone : All departments 01-692 7285
Direct orders: $01-6927714$

* For Tape Recorders \& Other Products

Micro Motor 2F-900

Level Meter Model-08

Magnetic Head 07-03
Micro Motor ZF-900
A transistorized motor for portable dictating machines and tape recorders.
Level'Meter Model-08
For cassette tape recorders and record players.

Magnetic Head 07-03

Recording and playback head for cassette tape recorders.

Micro Motor BF203R

Level Meter Model-15

Magnetic Head 14-03
Micro Motor BF203R
A transistorized governor motor for cassette tape recorders and record players.
Level Meter Model-15
Dual level meter for stereo tape recorders and record players.
Magnetic Head 14-03
Erasing head for cassette tape re corders.

A double 3-in-1 value from Sankyo. Micro motors. level meters. and magnetic heads. Now is the time to rely on one manufacturer for these important product integrals instead of purchasing one here another there. You will save time and monex-and get quality and reliability on top of economy! Many other models available. For further details write

日Sankyo

[^0]17.2. Shinbashi 1 chome, Minato-ku, Tokyo 105. Japan

American Sankyo Corp.:
Rm. 801-3, 95 Madison Ave., New York, N.Y. 10016, U.S.A

[^1]
Notony bearifinibute

Lizhtweight
*Trcpicalized

* Prectically unbreakable
* High impede ace, high level phones * Cabon microphones aveilable * Extremely comfortable
*Sinple to ser $\begin{aligned} \text { Sice. }\end{aligned}$
The ne'N 'Astrolite' headset has been adoptec by many of the eading Television, Erondcasting and Programre companies for studio and
O.B Ise, and no wonde:

It's fillv interchangeable with all known carbon level systems. Yo more cf the 'snap. crackle and pop, just the massage, clear and rel ab e, using our nəw noise - zancelling high qual ty moving-coil micre poone w th integra amplifiers.

AMPLIVOX COMMUNTOATMONS LIMITID

AMPLIVDX COMMUNICATIONS LTD. BERESFIDR AVENUE • WEMBLEY • MIDDX TELEPHONE 01-902 8991 GRAMS AND CABLES • AMPLIVOX • WEMBLEY

For noise-free communications, without 'carbon' crackles. Write or telephone for a free demonstration, at your premises, without any obligation.

Name
Title
Address

'Astronic' series 1700 A COMPLETE RANGE OF MODULES

ASSOCIATED ELECTRONIC ENGINEERS LTD. DALSTON GARDENS, STANMORE, MIDDLESEX. HA7-1BL TELEPHONE 01-204 2125

Abeurate and diret measurenent of spari without coupling to moving parts
 resonant reed TACHOMFIERS

for hand use or permanent mounting
Ranges and combinations of ranges from 900 to 100.000 r.p.m.
Descriptive Literature on Frahm Resonant Reed Tachometers and
Frequency Meters available from the sole U.K. Distributors. Manufacture and Distribution of Electrical Measuring Instruments and Electronic Equipment. The largest stocks in the U.K. for off-the-shelf delivery

Never Buillta Rit Before? Why not prove how easy it is the HEATHKIT way. Build one of these beginner kits.

You can see the picture of world progress at the International IEA at Olympia, London.
Not only today's picture.
The men who are reshaping progress show glimpses of future techniques which will set the course of the new global industrial revolution.
There are .950 of the world's most progressive electronic and automation companies at the IEA. More than a fifth of them are from abroad.
They bring progress into focus.
IEA is again expanded in area-one of the world's greatest technological events. America, Canada, Japan, Germany, Poland, France, Belgium, Czechoslovakia are among the countries helping to make it a truly international occasion.

IEA SHOWS THE WAY THE WORLD IS GOING

Visitors to the IEA who complete the reverse side of the trade ticket, or who register at the show, will receive on entry a free copy of the IEA New and Special Products Guide.

An IBl. Exhibition

INDUSTRIAL EXHIBITIONS LIMITED
9 Argyll Street, London, WIV 2HA

Nombrex accuracy!

C.R. TEST BRIDGE MODEL 32

Price f10. 10. Od
Another Nombrex high quality transistorised, modern styled instrument at a low price designed for the radio profession and educational establishments.
Note a few of the specifications details below:-

- 6 Ranges covering 1Ω to $100 \mathrm{M} \Omega$

1 pF to $100 \mu \mathrm{~F}$.

- Separate and clear R. \& C. scales.
- Power Factor measurement up to 70\%.
- Neon indication for Capacitor leakage.
- Luminescent balance indicator.
- Battery operated or external supply.

All Nombrex instruments are guaranteed against defective parts or faulty manufacture for 12 months.

Trade \& Export enquiries welcome. Send for full technical leaflets. Post and Packing 6/6d extra.

NOMBREX (1969) LTD. EXMOUTH DEVON Tel. 03.9523515

WW-041 FOR FURTHER DETAILS

'TRI-BOARD'

The ideal "Breadboard" material for rapid construction of electronic circuits at the design and prototype stages of development programmes.
TRI-BOARD is supplied in Fibreglass which is suitable for cold punching or cutting. Board size is $7 \frac{1}{2}^{\prime \prime} \times 5 \frac{3}{8}^{\prime \prime} \times \frac{1^{\prime \prime}}{16^{\prime \prime}}$ thick with 1 oz . copper
A roller tinned finish is standard.
PRICE 15/- net per board.
Quantity discounts apply:
TRIO INSTRUMENTS LTD.
BURNHAM ROAD,
DARTFORD, KENT.

QUAD 50 is a single channel 50 Watt amplifier designed for Broadcast, Recording and other applications in the Audio industry, completely proof against misuse and giving the highest quality of reproduction.

QUAD
for the
closest approach to the
original sound

INPUTS - 0.5 Vrms unbalanced with provision for an optional plug-in transformer for bridging 600 ohms lines.
OUTPUTS - isolated providing 50 watts into almost any impedance from 4 to 200 ohms.
DIMENSIONS - $12 \frac{3}{4}{ }^{\prime \prime} \times 6 \frac{1^{\prime \prime}}{} \times 4 \frac{1^{\prime \prime}}{}$
Complete the coupon and post today.

```
Please send me full details of the QUAD 50 Amplifier
NAME
POSITION
Please send me full details of the QUAD 50 Amplifier
COMPANY
ADDRESS
(BLOCK CAPITALS)
ACOUSTICAL MANUFACTURING CO. LTD.,
    HUNTINGDON. Telephone: Huntingdon(0480) 2561/2
```


Build-it•yourself speaker kits from Wharfedale

"Why don't you produce kits for bigger speakers?" people asked us when Unit 3 proved such a success.

We hope you'll like our answer-Unit 4 (2-speaker floor
 unit4 full range floor standing system.
2 speakers ($12^{\prime \prime}$ Bass and $3^{\prime \prime}$ Treble) to give full range, balanced reproduction. Frequency response of $45-17,000 \mathrm{~Hz}$. when housed in suitable cabinet. Superior 4-element crossover unit ensures optimum performance from each speaker. Rec. Retail Price $£ 16-0-0$.

All kits include speakers, crossover network, acoustic wadding, mounting bolts and connecting wire, together with full assembly instructions. No expert technical knowledge needed.

the true sound in High Fidelity

Rank Wharfedale Ltd., Idle • Bradford • Yorkshire
standing system) and Unit 5 (3-speaker monitor system). So if you're a high fidelity enthusiast who enjoys building his own equipment, send for details.
 unit 5 the monitor system you can build yourself.
3 speakers ($12^{\prime \prime}$ Bass, $5^{\prime \prime}$ Mid-Range unit, and 1 " Treble) give clean, smooth performance.
Frequency response of $40-20,000 \mathrm{~Hz}$. when housed in suitable cabinet. Unique mechanical/electrical 6 element crossover unit.
Rec. Retail Price $523-10-0$.
 WW-044 FOR FURTHER DETALLS

VITALITY BULBS LIMITED

VIT ALITY are pleased to announce the appointment on 1 st February 1970 of two main distributors to the electronics industry.

Combined Electronic Services Ltd., Queensway, Waddon Factory Estate, Croydon CR9 4DR
Phone: 01-688-3699. Telex: 262308
Farnell Electronic Components Ltd.,
Canal Road, Leeds LS12 2TU
Phone: 6363ヶ1. Telex: 55147
Comprehensive stocks will be maintained and orders for up to 500 lamps will be referred.
The small quantity user will benefit by improved delivery and wholesalers also, when unable to deliver small quantities from stock, can order from these two Companies.

Vitality Bulbs Ltd.,

Beetons Way, Bury St. Edmunds, Suffolk. Phone: 0284 2071. Telex: 81295

A Member of the General Instrument Group

SERCEL

PROGRAMMABLE D.C. STANDARDS Models 5500 \& 5501

D.C. Voltage and current standards

109999 read-out, $1^{\prime \prime}$ high digits
Two voltage ranges: $10.9999 \mathrm{~V} \& 1: 09999 \mathrm{~V}$
Resolution: $100 \mu \mathrm{~V} \& 10 \mu \mathrm{~V}$
Two current ranges: $10.9999 \mathrm{~mA} \& 1.09999 \mathrm{~mA}$
Resolution: $100 \mathrm{nA} \& 10 \mathrm{nA}$
Stability voltage: $0.005 \%+30 \mu \mathrm{~V}$ (1 year) current: $0.008 \%+50 \mathrm{nA}$

Temperature: $<4 \mathrm{ppm}+3 \mu \mathrm{~V}$ per ${ }^{\circ} \mathrm{C}$
Co-efficient: $\quad<8 \mathrm{ppm}+3 \mathrm{nA}$ per ${ }^{\circ} \mathrm{C}$ Programming: Manual or Remote (BCD) Response Time: within 10 milliseconds

BRITEC LIMITED
 17 Charing Cross Road, London, W.C. 2

Tel: 01-930 3070
Telex 915854
Stand N525, IEA Olympia 11-16 May.

Inset shows latest pattern Brush gear ensuring smooth continuous adjustment.

* SHROUDED FOR BENCH OR PANEL MOUNTING

50 AMP 0-24V DC L.T. SUPPLY UNIT

1 amp £5.10.0

2.5 amp	f6.15.0	8 amp f14.10.0	12 amp £21.0.0
5 amp	£9.15.0	10 amp f18.10.0	20 amp £37.0.0

COMPLETE PHOTO-ELECTRIC

SENSOR in one unit

* REFLECTIVE TYPE WITH BUILT-IN LIGHT SOURCE
* WILL AISO DPERATE FROM REMOTE LIGHT SOURCE
- Matchbox size
- SENSES ANY DBJECTCOLOURS. THICK SMOKE

0 perates from 12 V.A.C. Dútput signal 0.2 amp. 100 V.
f5.10.0 \qquad

SOLID STATE VARIABLE VOLTAGE CONTROL

- Dutput 25-240V
* Input 240 V 50 CPS
* 5 amp 810 amp models * Completaly sazied

5 amp model
£8.7.6
10 amp mode
£13.15.0

New from McMurdo: 700 series plugs and sockets.

These general purpose plugs and sockets feature removable contacts with solder tails. The connectors are styled with two and four rows of contacts, giving 7-71 ways. Covers in plastic clad aluminium are available with either top or side entry.

Plug Pins manufactured in brass, gold plated over silver plate
Socket Contacts manufactured in phosphor bronze, gold plated over silver plate.

Plug and Socket
Bodies.
made from general purpose Phenolic Resin.
Break down voltage

$$
-2 K V \text { DC minimum. }
$$

Current rating per contact at $30^{\circ} \mathrm{C}-5 \mathrm{amps} \mathrm{DC}$ or AC (RMS)
Current rating per contact at $65^{\circ} \mathrm{C}-3 \mathrm{amps} \mathrm{DC}$ or AC (RMS)
Maximum operating temperature $-100^{\circ} \mathrm{C}$.
For more details, write to

Authorised Stockists:- Lugton \& Co. Ltd., 209/210 Tottenham Court Road, London W.1. Tel: 3261
I.T.T.-electronic services, Standard Telephones \& Cables Lid., Edinburgh Way, Harlow. Essex. Tel: Harlow 26777, and agents in principal overseas countries

Fet. input Op. Amp.

rate of output................... $\pm 10 \mathrm{v} 5 \mathrm{~mA}$
open loop gain ...200,000
bias current. $\left..5 p A\right|^{\circ} \mathrm{C}$ small signal unity gain........... 8 MHz maximum for full output..... 400 kHz offset voltage vs temp....... $20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ c.m.r.r.. 10^{4} input impedance...........100,000M Ω Our engineers will be pleased to learn of your special requirements and applications.

LOW cosr
 BRITISH MADE QUICK DELJVERY

ancom limited
DEVONSHIRE STREET CHELTENHAM Telephone 53861

WW-049 FOR FURTHER DETAILS

MODEL \& ME. III

REPAIR SERVICE 7.14 DAYS

We specialise in repair, calibration and conversion of all types of instruments, industrial and precision grade to BSS.89.
Release notes and certificates of accuracy on request.

Suppliers of Elliott, Cambridge and Pye instruments

LEDON INSTRUMENTS LTD

76-78 DEPTFORD HIGH STREET, LONDON, S.E. 8
Tel.: 01-692 2689
E.I.D. \& G.P.O. APPROVED

CONTRACTOR TO H.M. GOVT.
 is presented for the first time. From 5 models, any voltage can be preset up to 60 v . D.C. with the maximum current availability. (For instance, 3 A at 5 V , $\frac{1}{2} \mathrm{~A}$ at 60 V .). Very high performance, computer grade capacitors, yet only $£ 25$ each. Delivery from stock. Other ranges in sizes 30,40 and 60 , cased models, special custom built supplies etc., are also on show so make sure you visit our stand. Seating is provided to enable you to rest awhile and relax. Fit A.P.T. supplies in your equipment and forget them.

A.P.T. ELECTRONIC INDUSTRIES LTD

Chertsey Road, Byfleet, Surrey.
Tel: Byfleet 41131/2/3/4. Grams: Aptran, Byfleet.

Some notes on Bridge Measurement by WAYNE KERR

Number 10

Gain and Attenuation

Transformer Ratio Arm Bridges can be used for the evaluation of many electrical parameters which are not usually associated with bridge measurement techniques.
The determination of network characteristics, including amplifier gain and phase shift; can readily be carried out over a wide range of frequencies by making use of the four-terminal facility already described in Note number 2.

Figure I shows an amplifier connected to a bridge ready for measurement.

FIG. 1

RT is a resistor terminating the network. When the bridge is balanced, equal currents 180° out of phase flow in the right hand transformer and RT is effectively returned to Neutral.

A measurement is initially made of the value of RT by connecting the left hand transformer to point B in the diagram. A second measurement is then made connecting the voltage output from the left hand tranisformer to point A. The voltage now applied to RT will be magnified by the gain of the amplifier and therefore a greater current will flow in the right hand transformer requiring a similar increase in current to be produced by the standard arm of the bridge. The bridge standard impedance and associated transformer taps are therefore adjusted to bring the bridge to balance. The ratio between the indicated resistance value and the original value obtained for RT is the voltage gain of the amplifier. Any reactive term introduced in the second measurement indicates a phase shift across the network and the phase angle can be calculated if required.

By varying the frequency of the bridge oscillator, a complete analysis can be made of the characteristics of an amplifier using this simple technique.
A similar arrangement can be used to calibrate an attenuator. Figure 2 shows a π section'step attenuator connected to a bridge.

FIG. 2

The voltage output from the left hand transformer is connected to the attenuator input and by setting the attenuator switch to position 1 an initial value for RT can be determined.

As the attenuator is sequentially switched to each step position and the bridge re-balanced, the ratio of each measured value to the initial measurement can be assessed. These ratios represent the voltage attenuation of each step and the phase shift along the network can be readily determined from the value of reactive term required to compiete the bridge balance.

The turns ratio of a transformer may be obtained with an arrangement similar to Figure 1. In this case the primary winding is connected to the left hand transformer and the secondary winding to RT.

The value of RT must be high compared with the output impedance of the transformer and, provided that this requirement is observed, the turns ratio is simply the bridge conductance reading multiplied by the resistance value of RT.

Farnell Digital Logic Systems Simulator for Education and Industry A Comprehensive Logic Instruction System

*FOR STUDENTS AND ENGINEERS to quickly learn and apply digital logic techniques.
*RUGGED, ROBUST CONSTRUCTION for trouble free operation under hard use.
*PROTECTED AGAINST OVERLOAD or short circuit. *COMPLETE WITH DETAILED INSTRUCTION manual introducing logic principles, binary arithmetic and boolean algebra and leading the student through a number of experiments and problems.
*COMPATIBLE WITH FARNELL INDUSTRIAL LOGIC HARDWARE. Actual control problems may be simulated before costly installation.
The system consists of a plinth, power supply, leads, capacitors, diode and a range of modules that can be purchased singly or in 'Logic Instruction Kit' or 'Nor Logic Kit: configurations.
For full details, please contact us at the address below. (Please state if you require literature on our full range of power supplies, electronic instruments and digital logic equipment).

FARNELL INSTRUMENTS LIMITED Sandbeck Way,
Wetherby, LS22 4DH, Yorkshire.
Telephone: 0937 3541/6 London Office : 01 802/5359

WW-OS3 FOR FURTHER DETAILS

The time we spend on testing cuts your equipment down-time...another reason it pays to ask for Mullard.

Mullard

Mullard Limited, Industrial Electronics Division.
Mullard House, Torrington Place, London WCI oI-580 6633
New Buyers Guide
There's a new wallchart on Mullard special quality receiving valves. It gives comprehensive equivalents information, and it's free from any Mullard Industrial Distributor-or use the reader enquiry service.

Mullard

Gothic Electrical Supplies Ltd., Gothic House, Henrietta Street, Birmingham 19.

Birmingham: Aston Cross 4301 Hawnt \& Company Ltd., I12/114 Pritchett Street, Birmingham 6.

Bristol 294313

Wireless Electric Ltd., 'Wirelect House', 122/123 St. Thomas Street, Bristol I.

Crawley 28700
SASCO, Gatwick Road, Crawley, Sussex.
Glasgow: Govan 3347/3991
Harper Robertson Electronics Ltd.,
82 Loanbank Quadrant, Glasgow SWI.

Leeds: 636311

Farnell Electronic Components Ltd., Canal Road, Leeds L5 12 2TU.

London: Elgar 7722
Cables \& Components Ltd., Park Avenue, London N.W.io.

London: New Cross 973I
Edmundsons Electronics Ltd., 60-74 Market
Parade, Rye Lane, London S.E.is.

Leicester: Leicester 76856 I

Townsend-Coates Ltd., Coleman Road, Leicester.

Rochdale 47411
Swift-Hardmans, P.O. Box 23, Hardale House, Baillie Street, Rochdale.

Sheffield 2716I

Needham Engineering Co. Ltd., P.O. Box 23, Townhead Street, Sheffield I.

IF YOU'RE SENSITIVE TO SOUND you'll be receptive to Reslo

Famed for a wide range of bi-directional, cardioid and radio microphones, Reslo also produce amplifiers, loudspeakers, P.A. systems and accessories, all precision-engineered to the highest
 Sound's great - with Reslo. Clip the coupon and we'll tell you more...

CLUBS \& LICENSED TRADE EXHIBITION
Prince's Exhibition Hall.

Birmingham

11-15 May
STAND
No, 42

Type UD1
Modern-style high-
Miniature ribbon Omni-directional internal 'anti-pop' with microphone, suitable for microphone for hand or internal 'anti-pop' filter. sound reinforcement or stand use. recording.

Celestion PA

Loudspeakers for all Public Address Systems

Re-entrant Horns

These Horns are capable of delivering a highly concentrated beam of sound over long distances. They are recommended for recreation centres, noisy factories and work shops and all indoor and outdoor locations where a high noise level has to be overcome

Driver Units

Pressure type units are available with
 or without tapped 100 V line trans-

WW-058 FOR FURTHER DETAILS

M. R. SUPPLIES (London) LTD.,
 (Established 1935)

Univerally recognined an muppllers of UP.TO-DATE MATERIAL, which doen the Job properly. Inatant dellvery. Satisfaction assured. Pricel nett.
ROOM THERMOSTATS. Danfona wall-mounted Thermontata, 40 d.s. F.-80 deg. F., 380 v. A.O., s amps ; 240 v. A.O., 6 ampi. Our nett price \&1/12/6 (des. 2/ノ).
MINIATURE RUNNING TIME METERS (Aangamo). Wo have great demanda for thio remarkable unlt and now can supply immedlately from brock, $200 / 250$ v. 50 o. oynchrobous. Counting up to industrial and domestic applicatione to indicate the running tiree of any electrical apparatus. eany to ingtall, $63 /$ (dees. 1/6).
gYNCERONOUS TIME SWITCHES, (Another one of oup popular specialitles) 200/240 7. 50 cor for ccurate prenet switching operations. Bangamo e.254, providiag up to 3 ou-oif operatione per
 pactly housed 4 ln. dia.. 3is in
ELECTRIC FANS (Papat), Ror extracting or blowing. The mone exceptlonal offer we have yot
 gmall aEfred motors. In addilon to our welldknown range (Lint GM.109), we oter amall open type S.P. Units 200/250 v. A.C., 1, B, 12, 24. 60 r.p.m., approx. Sin. long, with lin. ahatt projection euch aldo and enclosed gearbox. Sultable for diaplay work and many tadustrial usel.
Only $75 /-$ (dea. $5 /-$).
MinLATURE OOOLING FAMS. $200 / 250 \mathrm{v}$. A.C. With open type inductlon motor (no interference),
 higat duts extractorn, do., otul ouly $31 / 6$ (des. 1 .
AIR BLOWERS. Highly omplent unlta Atted inductlon totally anclosed motor $230 / 280 \mathrm{~F} .50 \mathrm{c}$

SYNOERONOUS ELECTRIC OLOCK MOVEMENTS (a mentioned and recommended in many astional joumala). $200 / 250 \mathrm{v}, 800$. Beli-atarting. Fitted spladles for bours, minutee and central weep decona For $8 / 10 \mathrm{dta}$. $3 / 6$ set.
SYNORRONOUS TMER MOTORs (Sangamo), $200 / 250 \mathrm{~F}, 50 \mathrm{c} / \mathrm{a}$. Sell-starting 21n. dis. $\times 21 \mathrm{La}$. deep. Choloe of following speeds: 1 r.p.ma, 12 r.p.h. ${ }^{1}$ r.p.b., ${ }^{2}$ rov. 12 bour, 1 rev. per day, (dee. $2 /-1$). smiths timer motors. synchr

EXTRMOTOR PANS. Ring mounted all metal construction. T/E Laduction motor, ulient opera
 man. dib, 500 CFM, 26/16/0 (den. 6/-).
immedute delivery of Bturt Contzfagal Pamps, inciuding atainleas steel (most models) officlal stoceist: "Parvalux" Elootrio motore (List O.m. 189)
M. R. SUPPLIES (LONDON) LTD., 68 New Oxford Street, London, W.C. 1
(Telephone: 01-636 2958)

Rola Celestion Ltd.
 THAMES DITTON, SURREY TELEPHONE 01-398 3402 TELEX 266135

IR - The Current Slicers - let you have your cake and eat it. You get guaranteed devices ex-stock at list prices from any one of us.

D.T.V. Group Ltd

126Hamilten Road, Wes: Nerwood, London SE27
Telephone $0^{-}-6706163$. Taex: 262415

Eastern Aero Electrica Servizes Ltd Building 44, London A rpert Vorth, Hounslow Micdlesex. Telephone 01-755 1314

The Electrical Equipment Co. (N.I.) Ltd Kelvin House, 51-53 Adelaice Street Bellast, N. Ireland BT2 8=M
Telephone: Belfast 26£22. Telex: 74100
Electronic Component Suprlies (Windso-) Ltd Thames Avenue, Windsor. 3erkshire
Telephone: Windsor 69311/aC. Telex: 84573
=arrell Elec-ronic Com دonきาs Ltd
Zanal Road Lミeds LS 22^{-}U
Telephone: Leeds 636311. Telex: 155147
Harmsworth, Townley \& Cc.
Wel ington Road, Todmorcent Lancashire
-elephone: Tadmorder $£ 601$
I.T.T. Electrenic Services

Edinsurgh Way, Harlow. Essex
Teleวhone: 02:-96 26777. Te ex: 81146

Lıgton \& Co. Ltd
209-212 Toltenham Court Road, London W1
Tzlephone: 01-636 3261. Telex: 25618

Valtronic Ltd
9 Appian W/ay, Dublin 6, Eire
Tylephone: Dublin 685086
S.A.S.C.O. Ltd

Gatwick Road, Crawley, Sussex
Telephone: Crawley 287J0. Telex: 87131
S.A.S.C.O. Scotland

Fectory 13E, Carbrain Ir dustrial Estate
Cumbernalid, Glasgow. Scotland
Telephone: Cumbernauld 25601. Telex: 778104
S.J.S. (Portsmouth) Ltd

Hi sea Industrial Estate, Portsmouth, Hampshire Telephone: Portsmouth 62332/3 and 62180 Telex: 86114

Townsend-Coates Ltd
Coleman Roac, Leicester Leicestershire
Telephone: Leicester 68561
Telex: 134321

The Binder plug Series 681-circular

The Binder plug outdates all similar connectors.
Franz Binder's team have designed a new connector.
Special Features:
Strong one-piece metal body.
Extra rugged locking ring with easy start thread.
Only four separate parts to assemble.
Compatible with existing types of screw-lock continental connectors. Long life, high contact pressure self-cleaning contacts.
Socket-contacts suitable for soldered or crimped connections.
Temperature range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Multi way and printed circuit edge connectors also manufactured. All technical data from:

2: Pole

3: Pole

4: Pole

5: Pole

(stereo)

6: Pole

7: Pole

018360033

WW- 060 FOR FURTHER DETAILS

WHAT A RANGE!

Now you can set up a complete CCTV studio with just
 operated portable camera and video tape recorder . . . at the fully inclusive price of $\mathbf{£} \mathbf{6 2 6 . 1 9 . 6}$.

Yes it's true. With the outstanding range of SHIBADEN CCTV equipment you can install your own CCTV Studio-all from one source.
THE SHIBADEN range includes eight individually designed cameras, four video tape recorders, including one battery model, seven monitors and receivers, plus a full selection of vision mixers.
General Video Systems Ltd. are the main U.K. importers: there are accredited agents through the U.K. and a full technical and after sales service is availatle.
Write today for a fully detailed brochure and price list of the SHIBADEN range.

HERE'S ONE EXAMPLE OF WHAT YOU CAN GET FOR £3000 Two viewfinder cameras with 5-1 zoom lenses. One caption camera (1 in . lens). Three preview monitors 9 in: one transmission monitor 16 in. Mixer and sync generator. A complete vision system for

Stentoritun spiakir Sheliw

SEE US AT THE
IEA EXHIBITION
MAY 11 th-16th
STAND E609

These superb new speaker systems make available even higher standards of performance in sound reproduction and uphold the high reputation gained by Whiteley Stentorian speakers throughout the world.
Attractively designed and soundly constructed, they are available in either Teak or Rosewood finish.

LC93
A $19^{\prime \prime} \times 12 \frac{1}{2}^{\prime \prime} \times 8 \frac{1}{2}^{\prime \prime}$ completely enclosed acoustically loaded cabinet housing a $9^{\prime \prime}$ graded melamine paper cone with siliconized cambric suspension giving a frequency response of 60 Hz to 20 KHz .

LC94

A $29 \frac{1}{2}^{\prime \prime} \times 23 \frac{3^{3}}{}{ }^{\prime \prime} \times 6 \frac{1^{\prime \prime}}{8}$ acoustic Labyrinth enclosure fitted with acoustic resistance in the pipe, using the same highly efficient $9^{\prime \prime}$ speaker unit used in the LC 93. Frequency response 45 Hz to 20 KHz .

LC95

The LC95 loudspeaker system is an acoustically loaded Bass Reflex cabinet, measuring $31 \frac{1^{\prime \prime}}{} \times 20 \frac{3^{\prime \prime}}{4} \times 13 \frac{1^{\prime \prime}}{}$, fitted with two loudspeakers and a crossover network. The bass loudspeaker being used is a newly developed $12^{\prime \prime}$ unit having a Melamine treated paper cone with a cambric surround. The middle and high frequency unit is a new $8^{\prime \prime}$ loudspeaker having a Melamine treated paper ribbed cone and surround.

CHASSIS and CASES

Type N

CASES
ALUMINIUM, SILVER HAMMERED FINISH

Plus post and packing.
Type N has a removable bottom, Type U removable bottom or back, Type W removable front, Type Y all-screwed construction, Type Z removable back and front.

BLANK CHASSIS

FOUR-SIDED 16 SWG ALUMINIUM

Size	Price	Base	Size	Price	Base
$6 \times 4 \times 2^{11}$	6/3	$2 / 11$	$10 \times 8 \times 2 \frac{1}{2}^{\prime \prime}$	12/-	5/6
$7 \times 4 \times 1{ }^{17}$	6/-	3/2	$12 \times 7 \times 2 \frac{1}{\prime \prime}^{\prime \prime}$	12/-	5/11
$7 \times 5 \times 2^{\prime \prime}$	7/6	3/5	$12 \times 9 \times 2 \frac{1}{2 \prime}$	13/9	7%
$8 \times 4 \times 2$ "	7/-	3/4	$13 \times 8 \times 2 \frac{1}{\prime \prime}^{\prime \prime}$	13/9	6/11
$8 \frac{1}{2} \times 5 \frac{1}{2} \times 2^{\prime \prime}$	8/-	3/9	$14 \times 7 \times 3^{\prime \prime}$	$14 / 6$	6/6
$9 \times 7 \times 2^{\prime \prime}$	9/3	4/10	$14 \times 10 \times 2 \frac{1}{2}{ }^{\prime \prime}$	16\%	87
$10 \times 4 \times 21^{\prime \prime}$	$9 /$	3/9	$15 \times 10 \times 2 \frac{1}{17}^{\prime \prime}$	16/6	$9 / 1$
$12 \times 4 \times 2 \frac{1}{2 \prime \prime}^{\prime \prime}$	10\%	4/3	$17 \times 10 \times 3$ "	19/6	10/1
$12 \times 5 \times 3^{\prime \prime}$	12/-	4/9			

Plus post and packing.

TO FIT OUR CASES

Size	Price	Base	Size		Price	Base
$7 \times 5 \times 1 \frac{1}{}{ }^{\prime \prime}$	7/-	3/9	12×63		10/9	5/11
7×5 星 $\times 2^{\prime \prime}$	7/9	3/9	14×88		13/6	7/11
$11 \times 63 \times 1{ }^{1}{ }^{*}$	10/-	5/6	153×93	$\times 2 \frac{1}{2}$	17/-	9/6
$11 \times 6 \frac{3}{4} \times 2^{\prime \prime}$	10/-	5/6	173×9	$\times 2 \frac{1}{1 /}$	18/6	$10 / 6$
Plus post and packing.						

Size Price Size Price

$5 \times 4 \times 21^{\prime \prime}$	$9 / 3$	$3 t \times 3 t \times 2 t^{\prime \prime}$
$4 \times 21 \times 1{ }^{\prime \prime}$	$6 /-$	$3 \times 2 \times 1{ }^{\prime \prime}$

$4 \times 24 \times 1 \frac{1}{\prime \prime}^{\prime \prime}$
$6 /-\quad 3 \times 2 \times 1^{\prime \prime}$
5/6
$7 / 3 \quad 6 \frac{7}{6} \times 2 \frac{11}{16} \times 1 \frac{15}{16}$ ($185 W G$) $8 / 3$
Plus post and packing.
PANELS: Any size up to 3 ft . at $6 /-\mathrm{sq}$. ft . 16 s.w.g. (18 s.w.g. 5/3). Plus post and packing.

H. L. SMITH \& CO. LTD.

Electronic Components - Audio Equipment $287 / 289$ EDGWARE ROAD, LONDON, W. 2 Tel: 01-723 5891
We shall be pleased to quote for all your component requirements.

KELVIN BRIDGE OHMETER

Type KB1

FOR LOW RESISTANCE MEASUREMENTS

6 RANGES			
0.00005		0.0015	ohms.
0.0005	"	0.015	,.
0.005	"	0.15	"
0.05	"	1.5	"
0.5	,	10.5	
5		105	

QUICK READING ACCURACY at full scale $\pm 0.2 \%$.
Complete with test leads.
DELIVERY-EX-STOCK.
Request full details from
IEA, STAND No. N576
CROYDON PRECISION INSTRUMENT CO. HAMPTON ROAD, CROYDON CR9-2RU Tel: 01-684 4025 \& 4094

'With a Weircliffe Bulk Eraser you can clean a tape whistle-clean without even taking it from the can'

'Now he tells me'

Let's come clean. Weircliffe Bulk Erasers are, quite simply, the best yuu can buy.

Magnetic tape/film - up to a maximum of $16^{\prime \prime}$ diameter $\times 35 \mathrm{~mm}$ width or $14 \frac{1}{2}^{\prime \prime} \times 2^{\prime \prime}-$ can be instantaneously erased. Which means you can handle up to 250 tapes in an hour. And you can, we promise you, even clean a tape while it's still in its can.

What's more, nobody has yet produced a tape or recorded a signal - whether it's data, audio, pulsed or video - that can't be clearly erased to between 80 dB and 90 dB below saturation recording level. Weircliffe Bulk Erasers have a greater erase factor than any other known make.

Weircliffe Bulk Erasers have been tested and tested by tape manufacturers and technical institutes throughout the world. They're used by broadcasting authorities from Australia to Finland. They're approved and supplied by the major manufacturers of data recording equipment.

They're that good.
For more information, fill in coupon
or 'phone Ken Chapman 01-568 9222 Ext. 366.

-

Cliteselas

SOLDERING

INSTRUMENTS

- SEVEN SIZES-10 WATTS TO 60 WATTS
- EXCELLENT THERMAL STABILITY (see new Litestat models for thermostatic control).

STRONG, LIGHTWEIGHT, COMFORTABLY ELEGANT DESIGNUNEQUALLED PERFORMANCE

- LONG-LIFE BITS, PHILIPS IRON-COATED OR 'PERMATIP'
- INDICATOR LAMPS OPTIONAL ON ALL MODELSALL VOLTAGES
- MANY ACCESSORIES: Heat Guards, Bench Stands, Bit-temperature Pyrometers, Thermal Wire Strippers, Solder pots.

28 Sydenham Road, Croydon, CR9 2LL
Telephone 01-688 8589 zand 4559

This tall-standing, beautifully built unit gets things organised for you -with loads of space for those scores of bits and pieces. Built with precision . . . steelstrong . . . measuring $42^{\prime \prime}$ high, $13^{\prime \prime}$ wide and $12^{\prime \prime}$ deep . . . having 18 drawers. It comes to you in a lustrous finish of grey or deep bronze green.
ORDER DIRECT FROM THE
MANUFAGTURER - USE THE COUPON BELOW N.C.BROWN LIMITED

Eagle Stedmorks Heywood, Lancs. Telephone: 69018

Send me your free brochure $\square \mathrm{ww}$
 pacesetters in storage equipment

WW- 066 FOR FURTHER DETALLS

Measure $\mu \mathrm{V}$'s from 1 Hz to 3 MHz

VOLTMETER RANGEES
$15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V}$... 500 V f.s.d. Acc. $=1 \%=1 \%$ f.s.d. $\pm 1 \mu \mathrm{~V}$ at 1 kHz . db RANGES
$-100 \mathrm{~dB},-90 \mathrm{~dB},-80 \mathrm{~dB} \ldots+50 \mathrm{~dB}$. Scale $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ rel. to $1 \mathrm{~mW} / 600 \Omega$. FREQUENCY RESPONSE
Above $500 \mu \mathrm{~V}$: $\pm 3 \mathrm{~dB}$ from 1 Hz to 3 MHz .
$\pm 0.3 \mathrm{~dB}$ from 4 Hz to 9 MHz
Type TM38 can be set to a restricted B.W. of 10 Hz to 10 kHz or 100 kHz .
INPUT IMPEDANCE
Above 50 mV : $>4 \cdot 3 \mathrm{M} \Omega<20 \mathrm{pf}$
On $50 \mu \mathrm{~V}$ to $50 \mathrm{mV}:>5 \mathrm{M} \Omega<50 \mathrm{pf}$
AMPLIFIER OUTPUT
150 mV at f.s.d. on all ranges into
$200 \mathrm{k} \Omega$ and 50 pF without loss.
SIZES \& WEIGHTS
TM3A: $5^{\prime \prime} \times 7^{\prime \prime} \times 5^{\prime \prime} \times 51 \mathrm{~b} .3 \mathrm{f}^{\prime \prime}$ scale.
TM3B: $7^{\prime \prime} \times 10^{\prime \prime} \times 6^{-1} .8 \mathrm{lb} .5^{\prime \prime}$ mirror scale

LEVELL PORTABLE INSTRUMENTS

Long battery life and large overload ratings are leading features of these solid state instruments. Mains power supply units and leather carrying cases are optional extras.

Measure μ V's from 1 Hz

 to 450 MHz .
H.F VOLTAGE RANGES
$1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV} \ldots 3 \mathrm{~V}$ f.s.d.
Square law scales. Acc. $\pm 4 \%$ of reading $\pm 1 \%$ of f.s.d. at 30 MHz .
H.F. dB RANGES
$-50 \mathrm{~dB},-40 \mathrm{~dB},-30 \mathrm{~dB} \ldots+20 \mathrm{~dB}$.
Scale $-10 \mathrm{~dB} /+3 \mathrm{~dB}$ rel. $101 \mathrm{~mW} / 50 \Omega$.
H.F. RESPONSE
$=0.7 \mathrm{~dB}$ from 1 MHz to 50 MHz .
= 3 dB from 300 kHz to 400 MHz .
$\pm 6 \mathrm{~dB}$ from 400 MHz to 450 MHz
L.F. RANGES

As TM3 except for the omission
of $15 \mu \mathrm{~V}$ and $150 \mu \mathrm{~V}$ ranges.
AMPLIFIER OUTPUT
As TM3 on L.F.
Square wave at 20 Hz on H.F with amplitude proportional to square of input. SIZES \& WEIGHTS

TM6B: $7^{\prime \prime} \times 10^{\circ} \times 6^{\prime \prime}$. 91b. $5^{\prime \prime}$ mirror scale

Measure D.C. μV 's, pA's \& Ω 's

VOLTAGE RANGES
$3 \mu \mathrm{~V} .1 \mathrm{CuV}, 30 \mu \mathrm{~V}$
1 kV . Acc. $\pm 1 \% \doteq 1 \%$ f.s.d. $\pm 0.1 \mu \mathrm{~V}$. LZ \& CZ scales.

Noise $<0.5 \mu \vee \mathrm{p}-\mathrm{p}$ on $3 \mu \vee$ range
Drift $<0.7 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \&<0.7 \mu \mathrm{~V} /$ day
Input res. $>1 \mathrm{M} \Omega / \mu \mathrm{V}$ up to $10 \mathrm{mV},>10 \mathrm{kM} \Omega$ on 30 mV to $1 \mathrm{~V}, 100 \mathrm{M} \Omega$ above 1 V .
CURRENT RANGES
$3 \mathrm{pA}, 10 \mathrm{pA}, 30 \mathrm{pA} \ldots 1 \mathrm{~mA}$ (1A for TM9BP) Acc. $\pm 2 \% \pm 1 \%$ i.s.d. $\pm 0.3 \mathrm{pA} . \mathrm{LZ} \& \mathrm{CZ}$
${ }^{\text {scales. Noise }}<0.7$ pA p-p on 3pA. Drift <1 pA/
${ }^{\circ} \mathrm{C} \&<1 \mathrm{pA} /$ day. Input res. $1 \mathrm{M} \Omega$ up to 1 nA . $100 \mathrm{k} \Omega$ on 3 nA to $1 \mu \mathrm{~A}, 100 \Omega$ on $3 \mu \mathrm{~A}$ to 1 mA , 0.12Ω on 3 mA to 1 A .
RESISTANCE RANGES
$3 \Omega, 10 \Omega, 30 \Omega \ldots 1 \mathrm{kM} \Omega$ linear. Acc. $\pm 1 \%$, $\pm 1 \% \mathrm{f} . \mathrm{s}$ d. up to $100 \mathrm{M} \Omega$. Test voltage 3 mV at f.s.d. on Ω ranges. Test currents $1 \mu \mathrm{~A}$ \& 1 nA on $\mathrm{k} \Omega \& \mathrm{M} \Omega$.
RECORDER OUTPUT
1 V at f.s.d. into $>1 \mathrm{k} \Omega$ on $L Z$ ranges
SIZES \& WEIGHTS
TM9A as TM3A. TM9B \& BP as TM3B

type	type	type
TM9A	TM9B	TM9BP
275	289	293

Hire terms and leaflets covering our full range of portable instruments are available from:

You get more from the new Bradley, with their new D.V.M...

- Smail size
- Guarded input giving high common mode rejection-140 dB at line frequency
- Accuracy $0.01 \% \pm 1$ digit

■ Range $25 \mu \mathrm{~V}$ to $1000 \mathrm{Vd} . c$. with 50% overrange
■ Maximum reading 1500.0 Vd.c.

- Automatic indication of polarity
- Unsaturated standard cell as reference
- Display storage
- 1-2-4-8 BCD data output

There are no extras to pay for, all these features are included in the price of $\mathbf{£ 3 4 0}$
Write for details of the
type 173 DVM.
G. \& E. BRADLEY LTD.

Electral House,
Neasden Lane,
London, N.W. 10.
Tel: 01-450 7811 Telex : 25583

EXPECT MORE FROM THE NEW BRADLEY

DIGITAL VOLTMETER 173
1.0193

"Studio 80" amplifier

The "Studio 80" Power Amplifier has been produced to high performance standards for Studio and Laboratory applications.

Its proven characteristics puts it in a class beyond anything yet available in power, performance, and price, and is the ultimate in economic functional engineering design - Write for full details of guaranteed performance specification.

POWER OUTPUT: Max 80 W into 8 ohm.
POWER BANDWIDTH: $\quad 5 \mathrm{~Hz}$ to 35 KHz at 80 W .
FREOUENCY RESPONSE: $\begin{aligned} & \quad+0 \mathrm{~dB} \\ & -.5 \mathrm{~dB}\end{aligned} 20 \mathrm{~Hz}$ to 20 KHz .
TOTAL DISTORTION: Less than 0.05 at 1 KHz .
SIGNAL TO NOISE RATIO: Better than- 95 dB below maximum output. POWER SUPPLY: $\quad 100 / 120-200 / 250 \mathrm{~A} / \mathrm{C} 50-60 \mathrm{~Hz}$.

Ballistics Computers by Westinghouse. Nine servo amplifiers with associated motors and Power Packs. Brand new in sealed containers. Price on application.

Automatic
Numbering Machine by Western Union. Four Uniselectors and 30 neons. Ideal basis for amateur computer. Application leaflet. £12.10s. post free.
punches, readers, vertiers and teleprinters. new computer engineering SURPLUS MATERIALS, AT REALISTIC PRICES. MOBILE ShOWROOM. CALLS ON REQUEST to suitable locations.
Elliott 8038 computers 4 k store, 803 C 8 K store, film handers, two tape readers, iwo tpape punches. ICL 1901 Central Processers 8 K store Lineprinter, 600 LPM. Elliott 903 8K store tape readers \& punch. Prices on application.

GOMPGER TRANMNG PRODGTS
2 Lordship Lane, LETCHWORTH, HERTS.
Tel: 4536 0462/6

We also manufacture P.A. Amplifiers, Loudspeakers, Tuners, etc. For full details please contact: S.N.S. Communications Ltd., 851 Ringwood Road, Bournemouth. Telephone: Northbourne 4845

SHRIMK YOUR SWITLHIIIG PROBLEMS...

 with 4 new improved miniature relays from Associated Automation

Mercury Wetted Contact Relay Type EBRM: Height only 10 mm for low profile pcb mounting; 20 mW bi-stable, 40 mW single. side-stable; operate time Ims nominal at max. coil power; life over 25×10^{9} operations at rated load of 100 VA ; bounce-free for both Form C or D contact resistance.

3

Hermetically Sealed Relay Type TF:
All-welded, T.O. 5 transistor can envelope giving high isolation switching with high shock and vibration characteristics; full CP. approval for standard versions; switching capability 1 amp at 28 V D.C. to low level; single and double pole; operate powers down to 40 mW

Dry Reed Relay Type ERMC/D/E:
Miniature open, shielded and encapsulated styles with up to 5 poles, offering all the advantages of reeds at low cost; standard relays operate from 35 mW depending on contact arrangement; electrostatic shielding high voltage insulation and low thermal types can be specified; life expectancy 10×10^{6} operations at fulf load, contact rating 10 VA

Enclosed Industrial Relay Series 20 :
Wide range of coils, contact arrangements and mountings; up to 6 poles, up to 5 amp 100 W : life over 10×10^{7}. operations; single or twin contacts in wide range of materials; low-priced, readily available, easy to apply.

All these illustrations are full size.

Whatever your switching problem - we can reduce it to size. These new additions increase an already comprehensive range of switches and relays for all communication and control purposes. All competitively priced and backed by Britain's most outstanding applications engineering service. Try us . . . for size.

- 32 Bit sizes - from 0.003 sq. in. to 1.5 sq. in. cross section.
- 16 wattage ratings -8 watts to 20 watts.
- Low voltage, Mains voltage.
- SOLDERSTATS

Miniature electronically controlled soldering instruments, specifically designed for microminiaturised electronlcs and printed circuit work.

- Heavy duty, general purpose, miniature and sub-miniature.
- Quality and reliability have been proven for many years - by the G.P.O., in industry, in the home.
- List prices range from $27 / 6 \mathrm{~d}$ to $£ 8.8 \mathrm{~s}$. 6 d .
- The Elremco-Wolf range includes the RIGHT soldering iron for YOUR job.

Solderstat Limited

P.O. Box No. 10 , Bush Fair, Harlow, Essex, England.
Telephone: Harlow 24032.
 Telex: 81284.

WW- 074 FOR FURTHER DETAIIS

FAULT LOCATIOII

KONTAKT "Cold Spray 75"

For rapid and effective fault location
Non-toxic, non-inflammable, Cold Spray 75 is a chemically inert coolant capable of producing temperatures of down to -42 centigrade. It can also be used to prevent heat damage during soldering processes, for the rapid freezing of small articles for biological and technical purposes and the prompt location of hairline cracks and other faults in temperature dependent components.

Other Kontakt products
Kontake 60 and Kontaks 61 for relay contact cleaning. Plastic Spray 70, eransparent protective lacquer. Insulating Spray 72.
Kontakt WL. Spray Wash.
Antistatic Spray 100. Antistatic agene for plastics.
Politur 80. Polish and cleaner.
Fluid 101. Dehydrating Fluid.
Details from UK distributors:
SPECIAL PRODUCTS DISTRIBUTORS LTD.
81 Piccadilly, London, W. 1
Tel: 01-629 9556
WW-076 FOR FURTHER DETAILS

Irendy twosome seek jobs in industry

You will find full employment for these new Racal instruments. Their cost is an insignificant addition to your overhead but their speed and accuracy will help to increase your output A truly cost/effective contribution to the effici-
ency of your counting processes, these willing workers are anxious to join your payroll. You don't often find two eligible instruments like the 9520 and 9521 . Interview Racal about either or both - we'll give them first-class credentials.

BAACALL a digital guarantee

proved performance high fidelity with specification guarantee

THE ENGLEFIELD SYSTEM

The Peak Sound Englefield system assembles from laboratory designed modules to provide a cost-performance ratio which has never been bettered in high fidelity. Here is top-flight circuitry housed in a cabinet of elegantly original design which is both beautiful and completely practical back and front. By assembling these Peak Sound units, you can pwn one of the best high fidelity instruments you have ever heard or seen and all for a cost of about $£ 38$ (about $£ 33$ if assembled from kit of parts). The assembly is supplied complete down to the necessary connecting wires supplied colour coded. cut to length and stripped at the ends for soldering. You can use the Englefield Cabinet design to house either the $12+12$ system as published in Practical Wireless, or the $25+25$ watt system as approved for the Hi-Fi News TwIn Twenty by Reg Williamson. The modules are all obtainable separately and are recommended for highest quality work. Go to your stockist and ask to see and hear Peak Sound equipment now. Leaflets on request.

THE SPECIFICATION

Using two Peat Sound PA. 12-15's. driven simultaneously at 1 KHz from 240 V . mains supply.
Output per channef: 11 watts into 15Ω : 14 watts into 8Ω. (see spec. guarantee).
Frequency bandwidth: 10 Hz to 45 KHz for 1 dB at 1 watt.
Total Harmonic Distortion at 1 KHz at 10 watt into 15Ω-0. 1%.
Input sensitivities: Mag. PU. 3.5 mV imp. R.I.A.A. equalized into $68 . \mathrm{K} \Omega$: Tape, 100 mV linear into 100 KQ : Radio, 100 mV linear into $100 \mathrm{~K} \Omega$
Overload factor: 29 dB on all input channels.
Signal/noise ratio: -65 dB on all inputs. Vol. control max
Controls: Volume, Treble. Bass, Low-pass Filter. Mono/S tereo: On/off; Balance
Power bandwidth for -1 dB at 20 watts R.M.S. into 15Ω at less than 0.25% distortion is 20 Hz to 20 KHz .

F.M.TUNER

Advance announcement

A complete Englefield tuner assembly would cost between $£ 33$ and $£ 50$ according to whichever modules were selected and whether mono or stereo. Mono could be conver ted to stereo whenever required and the cabinet matches that of the Amplifier illustrated above.

PEAK SOUND BAXENDALL SPEAKER

Peak Sound can supply the parts necessary to build the famous Baxendall Speaker described originally in 'Wireless World'. All to designer-approved spec. Details on request. Also available built in teak finished cabinet $18^{\prime \prime \prime} \times 12 " \times 10^{\prime \prime}-18 \frac{1}{2}$ gns.

PEAK SOUND SPECIFICATION GUARANTEE

Peak Sound guarantee that their equipment meets all specifications as published by them and that these are written in the same terms as are used in equipment reviews appearing in this and other leading high fidelity journals. Audio output powers are quoted at Continuous sine wave power in terms of Root Mean Square values (R.M.S.Jinto staled loads at stated frequencies.

peak sound

PEAK SOUND (HARROW) LTD., 32 St. Jude's Road, Englefield Green, Egham, Surrey Telephone: EGHAM 5316

[^2]

Presenting part of a wide range of components used throughout the world by the electronics engineer in search of quality and reliability.

Further information available.

INSTRUMENTS LTD BURGESS HILL, SUSSEX, ENGLAND TELEPHDNES: BURGESS HILL 2642-3 CABLES: RENDAR, BURGESS HILL

WW- 077 FOR FURTHER DETALLS

First, measure it - on the Rank Studio Flutter Meter. The Type 1740 measures accurately tee degree of Wow and Flutter on souad recorders and reproducers. For more information write to:

Trunsformers, Chotes

Saturable Renciors

Volimobile vollage regulators

Recifier Sels

Transformers
Air cooled power transformers from 0.5 to 300 kVA at voltages up to 2 kV . 1 or 3 phase, double or auto wound. step-up or step-down. We have manufactured transformers to over 5,000 different designs for many applications and the experience which has been accumulated from these designs is built into every Harmsworth, Townleytransformer

High Current Transformers
Years of experience have gone into the design and production techniques used in the manufacture of our low voltage, high current transformers for use in furnaces, high temperature research, heating and other applications. These techniques enable us to produce transformers with output currents up to tens of thousands of amps at economical prices

Saturable Reactors

From 5kVA up to 300 kVA for controlling the outputs from transformers or rectifier units.
Saturable reactors are infinitely variable reactors which can control outputs from transformers
etc. from 10% to 100% of full output.
Chokes
Specific enquiries are invited

Harmswarth.
 Tounley

Trunsformers
Rectifiers

HARMSWORTH, TOWNLEY \& CO. LTD. 2 Hare Hill, Todmorden, Lancs. Telephone Todmorden 2601 Extension 22

THEPISHIUTITN YeARBOK

Computer people won't reckon it's exactly required reading. But when something goes bust or runs out all of a sudden, you'll be glad you had a copy round the office. Just push it open, and there's a quick reference guide to computer consumables, services, and software. Practically automatic. Items of interest like junch card suppliers, consultants, air conditioning installers all appear within the hardbound cover in an orderly, cross-indexed layout. Everyday office neecs or emergencies are a pushover with our push -button Computer Weekly Yearbook.

Computer Weekly Yearbook

[^3]

JOHN SMITH LTD.

209 SPON LANE WEST BROMWICH - STAFFS. TEL. 021.5532516 (3 LINES) WOODS LANE-CRADLEY HEATH - WARLEY-WORCS. TEL. CR 6928 (3 3LINES)

All over the 5 continents and the 7 seas Bantex aerials are helping to
maintain reliable communications. Day in and day out.
Bantex aerials are selected because of their established reputation for reliability. A reputatlon earned over many years.
Bantex manufacture all types of marine aerials and for land use they have a range of mobile and base station aerials which operate through have a range of mobile and base station aerials which operate neugh and indu stry.
Bantex are best known for glass fibre aerials made by a unique process giving high strength. Other designs utilise metallic and other materials.

The photograph shows two boats of the Ford team in the 1969 Round Britain Power Boat Race, Both used Bantex aerials.

BRMTEス 4. 186 WALMER ROAD, LONDON W. 11 Telephone 01-727 3432

SOLE U.K. DISTRIBUTORS OF

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES, ETC.

- LOW COST QUICK DELIVIRY OVER 200 RANGES IN STOCK OTHIR RANGES TO ORDER

CLEAR PLASTIC METERS BAKELITE PANEL METERS			
TYPE SW. 100 $100 \times 80 \mathrm{~mm}$.		TYPE S-80	
		80 mm .	
		square fronts	
	50V. D.C.... 58/6	50ヶ4. 62/6	50V. D.C. 49/6
$100 \mu \mathrm{~A} \cdot \ldots . .67 / 6$	1 mmp . D.C.. . $59 / 6$	100μ A 58/6	1 amp. D.C..... 4816
$500 \mu \mathrm{~A}686$	5 map. D.C.. . 59/6	s00 4 A $52 / 8$	5 amp. D.C. . . . 4916
$\operatorname{lmA} \ldots588 / 6$	300V. A.C. . 5816	$1 \mathrm{~mA} \ldots \ldots . . .{ }^{\text {a }}$ 49/6	300 V . A.C. ... 52/6
20V. D.C.... 59/6	V0 Meter . . . 75/-	20V. D.C. $49 / 6$	vU Meter 67/6

'SEW' CLEAR PLASTIC METERS

Type Mr.seP. plin. aquare ironte.	
	10v. D.C...... 40/.
$50-0-50 \mu \mathrm{~A}$.... 58/•	20v. D.O...... 40/.
100μ A $58 /$.	B0V. D.O....... 40/.
100.0-100/2 A . $47 / 6$	300 V . D.O. 40/-
$500 \mu \mathrm{~A}$........ 45/-	15V. A.C....... 40/-
$1 \mathrm{~mA}{ }^{\text {a }}$ 40/0	300 V . A.O. ... 40 /
5 mA $40 / \cdot$	8 Meter lmA.. 42/-
$10 \mathrm{~mA} \mathrm{.......}. \mathrm{40/}$.	VU Meter...... 62/-
$60 \mathrm{~mA} \mathrm{.......}. \mathrm{40/}$.	1 mmp A.C. ${ }^{\circ}$.. 40/
$100 \mathrm{~mA}4 .40 /$.	5 mmp A.O. ${ }^{\text {a }}$. 40/
$500 \mathrm{~mA} \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{} .40 / \cdot$	$10 \mathrm{mmp} .4 .0 . *$. $40 /$.
1 amp. 40/-	20 amp. A.C. ${ }^{\text {- . }}$ 40/.
3amp. 40\%-	$30 \mathrm{amp}$. A.C.* . . 40/-

$$
50.0-50 \mu \mathrm{~A}
$$

$$
\begin{aligned}
& 100-0-100 \mu \mathrm{~A} \\
& 500 \mu \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& 500 \mu \mathrm{~A} \\
& 500=0-500 \mathrm{~A} \\
& 1 \mathrm{~A}
\end{aligned}
$$

$$
\operatorname{lmax}_{\operatorname{man}}
$$

$$
\begin{aligned}
& 10 \mathrm{~mA} \\
& 60 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& 60 \mathrm{~mA} \\
& 100 \mathrm{~mA} \\
& 500 \mathrm{~mA}
\end{aligned}
$$

$$
500 \mathrm{~mA}
$$

$$
\begin{aligned}
& 5 \text { amp. } \\
& 10 \text { anp. } \\
& 15 \text { rmp. }
\end{aligned}
$$

$$
\begin{aligned}
& 15 \mathrm{mpp} . \\
& 20 \mathrm{mmp} . \\
& 30 \mathrm{mp} .
\end{aligned}
$$

$$
\begin{aligned}
& 30 \mathrm{amp} . \\
& 80 \mathrm{arp} . \\
& 10 \mathrm{v} . \mathrm{D.c.} .
\end{aligned}
$$

*MOVING IRON ALL OTHERS MOVING COIL Please add postage

'SEW' BAKELITE PANEL METERS

EDGWISE METERS Tree PE.70. 3 17/32in. $\times 116 / 32 \mathrm{in}, \times 21 \mathrm{in}$ deed

SEND FOR ILLUSTRATED BROCHURE ON SEW PANEL METERS-DISCOUNTS FOR QUANTITIES

U.K. DISTRIBUTORS OF TMK mutimeters
 This range of Multimeters, manufactured by Tachlkawa Radio Instrument Co. of Japan,

 offers excellent value for money combined with qualizy and aceuracy of measurement. IMMEDIATE DELIVERY DISCOUNTS FOR QUANTITIES - TRADE ENQUIRIES INVITED
MD. 120

PL. 436

500

5025
\star All models fitted overload protection and supplied with batteries, prods and instructions.

LAB TESTER

TW. 50k

 size 5 fin. $\times 4$ ifin. $\times 2$ fin.

MODEL 5025 Feature: 57 Ranges. Clant Byin. Meter, Polarity Reverse Awlech. Benal- $\mathbb{C 1 2 . 1 0 . 0}$
 10MEKa. Decibels: -20 to +85 db . Plantle Cane with Cartylng Handle, size Giflo. x 2 fln . \times Btlo.

SOLE U.K. AGENTS FOR JAPAN'S PREMIER MANUFACTURER

VARIABLE VOLTAGE

 TRANSFORMERS- Excellent quality - Low price - Immediate delivery

ALL MODELS
INPUT 230 VOLTS, 50/60 CYCLES. OUTPUT VARIABLE 0-260 VOLTS
MODEL S-260 General Purpose Bench Mounting

1 Amp
2.5 Amp

5 Amp
8 Amp
10 Amp
12 Amp
20 Amp

METER PROBLEMS?

A very wide range of modern design instruments is available for 10/14 days' delivery.

Full Information from:

HARRIS ELECTRONICS (London)

138 QRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

WW-082 FOR FURTHER DETAILS

MODEL A-303TRD

please write for illustrated leaflets of these sanwa meters
SOLE IMPORTERS IN U.K:
QUALIT ELEOTRONIBS MTD.
47-49 HIGH STREET. KINGSTON-UPON-THAMES, SURREY. Tel:01-546 4585
WW- 084 FOR FURTHER DETAILS

DC DIFFERENTIAL AMPLIFIER
 FE-153-BD
 £38-10-0

low drift high common mode rejection small size battery powered

Also:
wide range of general purpose dc amplifiers, bridge supplies and bridge units for instrumentation and control purposes.

5 E E Electronic Laboratories Ltd Telephone: Preston 57560

WW-083 FOR FURTHER DETAILS

PRONOUNCED R-TEZ SEMICONDUCTORS

Write now for catalogue
ATES ELECTRONICS LTD., MERCURY HOUSE, PARK ROYAL, LONDON W5
TEL: 01.9986171 TELEX:ATES LONDCN 262401

Si451 Millivoltmatar

* 20 ranges also with variable control permitting easy reading of relative frequency response

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator SPECIAL FEATURES:

* very low distortion content-less than .O5\%
* an output conforming to RIAA recording characteristic
* battery operation for no ripple or hum loop
* square wave output of fast rise time
£37.0.0
also available
Si452 Distortion Measuring Unit
* low cost distortion measurement down to . 01% with comprehensive facilities including L.F. cut switch. etc

[^4]
MIM-THE INSTRUMENTATION LIBRARY OF TIIE 70 's

Well, if imitation really is flattery -we're flattered

Everywhere we look around the world there's yet another modular lock-in amplifier, modular pulse, generator, modular sampler. Fortunately, its not that easy to crib the whole AIM concept because it needs something rather special in R and D. You need people who can engineer a philosophy into hardware. People who can see a connection between a 1 GHz sampling system and a correlation computer, between a phase-lock loop and a pulse generator.

You also need a special sort of customer. A customer who thinks about his instrumentation. A customer who is creative himself. Who makes the AIM System philosophy part of his own experimental approach.

All arcuund the world thoughtful people are seeing how powerful the AIM system really is. Let one of our field engineers discuss the AIM system with you.

AIM basic but interlocking instruments:
REAL TIME CORRELATION COMPUTER
PULSE GENERATOR
1GHz SAMPLING SYSTEM
LOW NOISE AMPLIFIERS
OP AMPS, ANALOG COMPUTING MODULES
A-D CONVERTERS
TAPE PUNCH
LOCK-IN AMPLIFIERS
PHASELOCK SYSTEMS
TRACKING FILTER
LOG AMPS
TRANSFER FUNCTION ANALYSER
$1 / 3$ OCTAVE FILTER SYSTEMS
SIGNAL AVERAGER

[^5]

ERNEST TURNER

ELECTRICAL INSTRUMENTS LTD. TOTTERIDGE AVENUE HIGH WYCOMBE
BUCKS. ENGLAND.
Telephone 30931/4

RADFORD
NEW POWER AMPLIFIERS MONO POWER AMPLIFIER PA5O STEREO POWER AMPLIFIER SPA50
The PA 50 is a transistor power amplifier having a power output in excess of 50 watts. The SPA 50 is a dual channel power amplifier having identical characteristics. The amplifier was designed basically for sound reproduction for professional use, but its exceptional characteristics in respect of distortion, transient response and power bandwidth make it also suitable for commercial and industrial uses.

The presentation is a low format of a depth suitable for shelf mounting. The amplifier is supplied in a metal housing suitable for fitting into a cabinet if required. The front facia is of extruded aluminium section with end pieces to form a complete frame. It is fitted with an anodised aluminium panel, screen printed.
The amplifier uses a true complementary symmetry output circuit with matched NPN and PNP transistors to obtain a virtually zero 'crossover' distortion. Improved circuitry has been developed to provide high gain in the output stages and drive circuits with wide bandwidth permitting a large amount of feedback to ensure an extremely low overall distortion. The success of the circuitry and the devices used is exhibited by the power bandwidth characteristic of 0.5 MHz at the -3 dB point.
The amplifier is unconditionally and absolutely stable with any form of output load of any impedance characteristic, from short-circuit to open-circuit. The amplifier itself is fully protected by current and voltage limiting and in addition is protected against the failure of a device in the power amplifier itself by a high speed current protection circuit in the power supply.

A new low distortion level of 0.01% has been reached for the amplifier at the $-3 d B$ reference to the rated output. with the distortion proportionally decreasing with output power. Approximately 60 watts (continuous tone rating) is available at clipping level at 0.025% distortion both channels driven simultaneously.

Considerable attention has been given to reliability and ease of service. All components are to Mil specifications where possible. The amplifier is constructed in modules and all active circuits are on plug in type circuit boards. The contacts in the sockets and circuit boards afe hard electro gold plated and the circuit boards themselves are immersion gold plated. Circuit board sockets are fitted to a printed circuit mother board thus eliminating wiring with its variations in performance and stability.

SPECIFICATION

Mains Input
110 volts. 120 V .130 V .220 V .230 V . 240 V. $50-60 \mathrm{~Hz}$.
Output Matching
Impedance
4-16 ohms (100 V line extra).
Output Power
Distortion
Input Facilities

Input Sensitivity
Functions
50 Volt-amperes nominal. (Watts into an 8 ohm resistive load). 0.025% at clipping onset. $0 \cdot 01 \%$ at -3 dB ref: clip level. High impedance 22 K ohms. Low impedance, optional 200/600 ohms balanced/unbalanced.

Switched on front panel
Mains on/off.
Louspeaker 1.
Loudspeaker 2.
Hi/Low Impedance input.
Price: PA 50-£55 SPA 50-玉85
A complementary matching stereo pre-amplifier control unit SC 24 is also available price $\mathbf{\text { E75 }}$. Further details available upon request.

Radford Audio Limited
Bristol BS3 2 HZ , England

TELEPRINTERS P PERFORATORS REPERFORATORS • TAPEREADERS DATA PROCESSING EQUIPMENT

Codes: Int. No. 2 Mercury/Persasus, Elliot 803, Binary and special purpose Codes.

2-5-6-7-8- TRACK AND
MULTIWIRE EQUIPMENT

TELEGRAPH AUTOMATION ANO COMPUTER PERIPHERAL ACCESSORIES DATEL MODEM TERMINALS, TELEPRINTER SWITCHBOARDS

Picture Telegraph, Desk-Fax. Morse Equipment; Pen Recorders; Switchboards; Converters and Stabilised Rectifiers; Tape Holders, Pullers and Fast winders; Governed, Sychronous and Phonic Motors; Teleprinter Tables and Cabinets; Silence Covers; Distortion and Relay Testers; Send/Receive Low and High Pass filters; Teleprinter, Morse, Teledelos Paper, Tape and Ribbons; Polarised and speciaised relays and Bases; Terminals VF, and F.M Equipment: Tele .F. and P.M. Equip Ren Tele phone Carriers and Repeaters; Diversity; Frequency Shift, Keying Equipment; LIne Transformers and Noise Suppressors; Racks and Consoles; Plugs, Sockers, Key, Push, Miniature and other Switches; Cords, Wires, Cables and Switchboard Accessories; Teleprinter Tools; Stroboscopes and Electronic Forks; Cold Cathode Matrics; Test Equipment; Miscellaneous Accessories, Teleprinter and Teletype Spares.

W. BATEY \& COMPANY

Gaiety Works, Akeman Street, Tring, Herts.
Tei.: Tring 3476 (3 lines) Cables: RAHNO TRING STD: 044282 TELEX 82362

WW- 089 FOR FURTHER DETAILS

FANTASTIC SCHAUB-LORENZ MUSIC CENTRE MODEL 5001 WORTH OVER 1200		
COMBINED 4 WavEBAND RAOIO \& 126 TRACK TAPE RECORDER GIVING 46 HOURS OF RECORDING TIME An amazing piece of equipment combining a 4 -band radio and a 126 track tape recorder in one modern compact unit $31^{\prime \prime} \times 13^{\prime \prime} \times 11^{\prime \prime}$. The recorder section gives 46 hours of continuous unrepeated playing time-fantastic but true46 hours of music can be yours at the touch of a switch. Brief specification: Incorporates 27 transistors and 15 diodes. Four wavebands VHF/MW/LW/SW, with exclusive "Auton Control", to give precise station tuning. Separate Bass and Treble Controls. A wide magnetic tape records 126 separate tracks of 22 minutes each. Every track is able to record/replay so that you need not touch the machine for the total 46 hours replay time. Rewind time for each 22 minutes track only 25 seconds. Tape speed 10.5 cm sec. Inputs for direct recording from microphone and record player. Pause control fitted. 10 watts quality output. Built-in $10^{\circ \prime}$ speaker and tweeter. Sockets for extension speakers. Beautifully housed in wooden cabinet. Complete with switched audio input adaptor for mike and gram. Brand New in Makers Carton.		
OBTAINABLE FROM 21 Lodge Lane, North Finchley, London, N.12.		
tel: 01-445 0749 (after hours oemonstrations ano sales 01-445 2825). PERSONAL CALLERS WELCOME-9 a.m. to 6 p.m. (Sats. 10 a.m. -4 p.m.)		

(2)

 LONG-LIFE BITS CUT COSTS

Chisel

$\rightarrow 2$

Screwdriver

Conical

These new bits are electrolytically iron-coated over their whole length. giving tremendously increased life and freedom from seizure. Real savings in initial cost and maintenance of copper bits can be achieved by using Philips bits.

Now available in the shapes illustrated for all seven LITESOLD models (also fit similar $\frac{1}{8}{ }^{\prime \prime}, \frac{3}{16}{ }^{\prime \prime}$ and $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ bit types).

Send for further details:-

LIGHT SOLDERING DEVELOPMENTS LTD.,
28 Sydenham Road, Croydon CR9 2LL
Telephone: 01-688 $8589 \& 4559$
WW- 090 FOR FURTHER DETALLS

The extensive range of Oxley precision made mechanical spindle couplers have been specially designed for leading out shafts and spindles from inconveniently mounted components.

They are unique in utilising P.T.F.E. as bearings, thus reducing friction and consequently eliminating wear and backlash to a minimum, ensuring long life.

The units can be supplied with taper and grub screws or with socket clamp arrangement.

Standard shaft sizes range from $0.125^{\prime \prime}$ to $0.250^{\prime \prime}$ other shaft sizes can be accommodated upon request.

For full technical particulars, write to:-
DXLEY OEVELOPMENTS COMPANY LIMITED, Priory Park, ULVERSTON, North Lancs.

Available now! The new Mullard data book for 1970

Quick! get up-to-date with the latest information about Mullard semiconductors, valves, television picture tubes and components.

For easy flick-through location, each section of this pocket-sized data book is colour-coded.

This

 newrange of AIR SPACED VARIABLE CAPACITORS and TRIMMERS

CATALOGUE AVAILABLE NOW!

Send today for our NEW LIST 300 detailing our wide range-from miniature air spaced trimmers up to large high voltage transmitting capacitors.

Write today for complete details H. TINSLEY \& CO LTD • WERNDEE HALL SOUTH NORWOOD LONDON SE25 •01-654 6046

TEOHNICAL TRAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW
 SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meterall under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and. Electronics.

SEE US AT THE
I.E.A. EXHIBITION STAND G152

The D51 is a new oscilloscope incorporating all the current requirements of a general purpose oscilloscope. Of strong.construction and simple controls, the D51 can be easily operated by non-technical personnel and is an ideal oscilloscope to satisfy the demands of A-level syllabuses and the needs of Technical Colleges.

Look at these features and then send for full details NOWII!
True Dual Beam Large display area $6 \times 10 \mathrm{~cm} \square$ Wide Bandwidth (DC-6MHz channel 1, DC-3MHz channel 2) $10 \mathrm{mV} / \mathrm{cm}$ Sensitivity (DC-2MHz) Exceptionally Bright Trace \square Small Size - Lightweight All this for only $£ 93.0 .0$

Telequipment < \gg

Telequipment Limited, 313 Chase Road, Southgate, London, N.14. Telephone: 01-882 1166. Telex: 262004. A member of the Tektronix Group.

For Overseas enquiries write to: Tektronix Ltd., P.O. Box 48 , Guernsev, C.I.
WW-094 FOR FURTHER DETALLS

Wireless World

Electronics, Television, Radio, Audio

This month's cover illustrates the use of computer graphics in the design of integrated circuits at Mullard, Southampton. On p. 215 we review the latest developments in microcircuits seen at the Paris components show.

IN OUR NEXT ISSUE

Simple transistor tester for diagnosing which junction has failed.
Class AB audio amplifier with performance comparable to existing class A but with reduced thermal dissipation.
Survey of communication receiver techniques with tabulated details of equipment on the U.K. market.

ibpa

Contents

[^6]248 Literature Received
248 H. F. Predictions
249 New Products
254 Real \& Imaginary by "Vector"
Al19 SITUATIONS VACANT
A144 INDEX TO ADVERTISERS
Investing in the future

Circuit Ideas

Announcements
Letters to the Editor
Microelectronics at the Paris Components Show
News of the Month
Exhibitors at the I.E.A. Show
Sound ' 70
World of Amateur Radio
Aperiodic Loop Aerial by Philip G. Baker
Painless Electronics
Spring Song by Thomas Roddam
May Meetings

Aerospace Instrumentation by R. Gregory
$20-\mathrm{MHz}$ Counter Timer
London Physics Exhibition
Track-while-scan Radar System by 7. L. Sendles
Conferences \& Exhibitions
Personalities

Low-cost Horn Loudspeaker System by "Toneburst"

Simple Audio Pre-amplifier by f. L. Linsley Hood
Plotting Semiconductor Characteristics by W. G. Allen

Active Filters- 10 by F. E. J. Girling © E. F. Good

[^7]

IEA
 STAND
 G201 GRAND HALL

Fifteen different phosphors, from a very short persistence blue-purple $(0.12 \mu \mathrm{~s})$ to a very long persistence orange (25s), together with optional extras such as internal and external graticules, are offered by Brimar to users of cathode ray tubes.

Brimar offers the widest range of phosphors in the industry, leads in the use of new materials, and has pioneered special phosphors for medical applications, in which field they enjoy complete superiority.

And in addition to this, Brimar have an unparalleled capability in chemistry, electron optics, and vacuum physics, enabling them to offer the widest design diversity backed by a personalised customer service. This service, provided by engineers with extensive experience of the
electronics industry, covers advice on tube characteristics, operating conditions, and associated components.

Tailored packaging and reliable deliveries to meet production schedules are also part of the Brimar services.

Want to know more about BRIMAR Industrial Cathode Ray Tubes?-Ask to see our latest catalogue.

Thorn Radio Valves and Tubes Limited

7 Soho Square, London, W1V 6DN.
Telephone : 01-4375233

Editor-in-chief:

W. T. COCKING, F.I.E.E.

Editor:
H. W. BARNARD

Technical Editor:

T. E. IVALI.

Assistant Editors:
B. S. CRANK
J. H. WEADEN

Editorial Assistant

J. GREENBANK, B.A.

Drawing Office:
H. J. COOKE

Production:

D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
G. J. STICHBURY
R. PARSONS (Classified Adzertisement Manager)

Telephone: 01-928 3333 Ext. 538

Investing in the future

The prospects of the U.K. electronics industry,* which is believed to be the fourth largest in the world (the U.S.A., Japan and Germany being the first three), have been assessed by the Electronics Economic Development Committee (Little Neddy) and a lengthy report has been issued by the National Economic Development Council. This report, which is primarily concerned with the industry's prospects during the next two years, draws a number of conclusions and makes several recommendations, the most far reaching being that concerning expenditure on research and development.

The committee considers that the most important immediately practicable step which could be taken to improve the flow of resources to the industry would be the recognition on the part of the government, that the industry's research and development expenditure fulfils the same economic function as its capital expenditure, namely a provision for the future out of current resources. In this connection the E.D.C. lays stress on the industry's development effort as distinct from its research effort. This is the vital link in translating the fruits of research into marketable products, and it is here where pressure on resources is greatest. It is already national policy to encourage industry to make adequate provision for the future in terms of production hardware, but since, as regards R \& D, investment grants are confined to capital expenditure incurred in producing prototypes and in providing plant or machinery for use in scientific research, the effect is to discriminate in favour of industries whose R \& D effort is relatively plant-intensive at the expense of industries like electronics whose R \& D effort has a high labour content. The result is to exclude from grant the bulk of the R \& D expenditure of the electronics industry. The E.D.C. therefore recommends that government should find some way of extending the coverage of the investment grant system to cover the whole of the industry's R \& D expenditure, including that on software, even if this means some reduction in level of hardware grants.
There may be those, possibly of other industries, who will consider that electronics will be "feather-bedded" if Little Neddy's proposal is put into effect.

What are the facts therefore, that prompted the committee to suggest this fundamental change in the attitude towards the cost of R \& D in a company's accounts? The R \& D effort of the electronics industry is approximately five times as important in relation to capital expenditure as the national average for the country's manufacturing industry. With the exception of the chemical and aircraft industries electronics has a higher density of qualified manpower in R \& D than any other industry. In a normal year the R \& D expenditure of our industry is about twice its expenditure on capital investment, as normally defined, and currently exceeds $£ 100 \mathrm{~m}$. In manufacturing industry as a whole the position is reversed-capital expenditure being about two and a half times that spent on R \& D. Moreover, the technological advance and innovation in electronics results in very rapid obsolescence both of the end product and, not infrequently, the means of production.

Lest it should be thought that the committee which drew up the report is heavily biased it should be stated that of the 18 representatives of management, trade unions and government (under the chairmanship of Sir Eric Mensforth) only seven represent electronics companies: Plessey, Rank Bush Murphy, Wayne Kerr, International Computers, Ferranti, Mullard and Marconi.

One question which may justifiably be asked is "what of government financed research contracts?". How will the Treasury be able to differentiate between research for which government is paying and company research which could be claimed as "capital investment"? Despite this administrative problem we wholeheartedly agree with the committee's recommendation.

Low-cost Horn Loudspeaker System Details of successful experiments

by "Toneburst"

As far as the ear can tell, consistently clean and spacious bass can be reproduced only by a driver unit coupled to a horn-type acoustic transformer. This fact has, of course, been known for years and most of the credit must go to Paul Klipsch who in 1941^{1} described a split folded bass horn which outperformed theoretical expectations, and set a performance standard that cannot be excelled. If there is any quibble about the performance of such a bass horn it can only be that 'level' response below about 35 Hz is difficult to achieve.

In a sense it is unfortunate that Klipsch achieved what he did. Theoretical analysis of the performance of a corner horn has not advanced significantly since. Langford-Smith ${ }^{2}$ comments that "The only known method for handling frequencies below the flare cut-off frequency of an exponential horn, with good fidelity, is the use of an enclosed air-chamber behind the diaphragm, resonant at a frequency in the

Fig. 1. One of the two side frames. Inset is a diagram of the complete frame. The nails should be knocked in before the two sides are joined together. Nails for the front panel can be added to the complete frame.
vicinity of the flare cut-off frequency, as used with the Klipsch loudspeaker". This is a very peculiar remark for it implicitly casts doubt on the exact nature and function of the horn mouth. In 1943^{3} Klipsch had reported that "The improved horn has a cut-off due to flare of 50 cycles, but the impedance measurements and ear tests show that a strong fundamental is radiated down to 35 cycles. It must be concluded that the computed horn impedances are only qualitatively correct for frequencies within an octave of the low-frequency cut-off."

No experiments seem to have been done since Klipsch's design appeared, in a direct attempt to compromise horn theory without losing quality. Bearing in mind Langford-Smith's condensation of Klipsch's own experience there seems to be a good case for expecting to be able to simplify the design of a split folded corner horn whilst maintaining an acceptable low frequency performance.

Fig. 2. Enclosure fully concreted and ready to have the bass driver mounted on its board.

Experimental work

The first necessary decisions were on size and shape. Klipsch himself gives some support in saying that "The front throat baffle may be rearranged for a simple flare rate working out of a larger cone, in which case the air chamber between the cone and throat may be eliminated." A simple starting point was found in an adaptation of the Ambassador bass horn described by Briggs. ${ }^{5}$ There is no compression chamber behind the cone in this design, but after a slightly modified version had been constructed, employing a Fane 122/12 12-in driver, good response down to about 40 Hz was heard. Unfortunately there were humps and bumps from about 320 Hz upwards. Further modificatirns, to smooth the flaring rate, removed the trouble above 320 Hz but also removed the bass below 100 Hz . A compression chamber to Klipsch's specification was constructed by filling up the corner space at the back of the enclosure. The result was, and is, clean bass with response down to below 30 Hz .

A description of the final horn structure follows. It is recommended that all instructions are followed at least in spirit, if not to the letter, or significant resonances may be found rather late in the day.

Construction of bass horn

Raw materials required are lengths of $1 \times$ $\frac{3}{4}$ in or 1×1 in wood, $1 \frac{1}{2}$ in nails, sand and cement, and pieces of plywood, blockboard, or chipboard. Most of the wood items can be bought as off-cuts and the sand and cement is available in a suitable mix in convenient $7-\mathrm{lb}$ bags costing 2s 6 d (Rustins).
Frame. The first step is to put together a rectangular framework into the front and sides of which will be cast concrete panels. Two side frames must be constructed as in Fig. 1, and $1 \frac{1}{2}$ in keying nails knocked in as shown. Cutting the wood should present no problems even to those with no experience. An Eclipse No. 66 general purpose saw is recommended to anyone in doubt-it costs just less than $£ 1$. (After marking the wood to length remember to cut on the outside of the mark(s) and not to try to make two wood lengths out of a piece exactly the length of the two pieces finally required.)

Assembly should be on a flat surface, on a single layer of paper if need be. The recommended adhesive is Evostik Resin ' W '. The 4 floz. 'oil can' dispenser is ideal for all the joining operations. This may be refilled from a 1-pt pack thus combining convenience with overall economy.

After one side frame is complete, and the resin set, four 13 -in lengths are to be stood vertically at the correct positions on one of the frames and the adhesive left to dry. This is the one operation for which square-cut ends are essential.

After cutting each length of wood make sure that no saw-dust is left on the ends when the resin is applied. (A stiff wire brush is useful here.)

If $1 \times \frac{3}{4}$ in wood is used the joining should allow the 1 -in face to set the depth for the concrete front panel.
Concrete Panels. The front and sides must

Fig. 3. Diagram of speaker mounting board within the enclosure showing position of wood blocks. These blocks were trimmed to fit-the back of the concrete panel was rather irregular.
next be fitted with concrete panels to the depth of the wood limiting each area.

The side panels are the smallest and thus the best place to start the concreting. Place about ten layers of newspaper on a flat surface-table or floor-and lay the frame with one of its sides down on the paper.

The cement may be used with or without gravel. If the average particle size of any gravel used is not less than $\frac{3}{8} \mathrm{in}$, two or three pounds may be safely added to a $7-\mathrm{lb}$ bag of sand and cement without significantly weakening the binding power. The complete contents of each bag of sand and cement should be used at once or some sandy results may be obtained due to separation of the mix during storage.

Start with 71b of cement mix (with or without a known amount of gravel) and fill up the panels. It is then just a question of doing some arithmetic to find out how much more concrete will be required to complete the panelling for one or two horn structures.
The mix should be fluid and can be spooned into the spaces. The newspaper will quickly absorb any excess water, and it should be possible to lift the frame after about 18 hours though it is better to leave it for 24 hours. (The concrete will take up to a week to dry out completely.)

The front panel should be cast next in exactly the same manner as described, but should not be lifted from the paper for about 48 hours. Finally the other side panels may be cast.
Speaker Board. The $16 \frac{1}{2}$ in $\times 13$ in panel carrying the bass driver should be not less than $\frac{1}{2}$ in thick and may be made of plywood, blockboard or chipboard. A 10 -in diameter hole must be cut in the middle. It is quite easy to drill holes round the edge of a 10 -in circle (as close together as possible) and then to drill round again in both directions at 45° to the surface. Finally, a sharp knock on the centre of the
circle with a hammer should remove the disc and the edge of the hole can be cleaned up with a rasp or file.

The speaker board should be fitted into the concrete framework using Resin, as shown in Fig. 2. Once dry, wooden blocks should be glued as shown in Fig. 3. These blocks remove all significant resonance from the speaker mounting board.
Top and bottom concrete flare-panels. Using the same woodworking techniques as before two wooden frames should be made, using the main frame as a vice. When the joints are dry these frames should be removed and after positioning carefully on newspaper (with one wooden edge of each necessarily overhanging the table, if constructed as revealed in Fig. 4) concrete mix should be spooned in. Again, if $1 \times \frac{3}{4}$ in wood is used the 1 -in face should give the thickness of the panel. When dry these panels can be glued into the main frame-which should be placed on its side. Next the speaker can be screwed down, as tightly as possible; using four 1 -in screws. The terminals should face the middle of one side of the enclosure. Wooden flare-panels. Simple rectangles of $\frac{1}{2}$-in plywood will do for these-it does not matter at all that the junction with the speaker board is along a 'sharp' edge-a similar edge will also be 'flush' with the rear of the enclosure so far built. To fix these panels the enclosure should be turned on its side and each panel glued along the edges that will lie along the wood strips in the sides. When the joints are dry turn the enclosure on its front and glue along the junctions between the panels and the speaker mounting board.
Back panels and duct. The details of the remaining panels ($\frac{1}{2}$ in to $\frac{3}{4}$ in thick) are deducible from Figs. 4 and 5. The angle pieces forming the 3 -in high vent to the rear of the cone should be drilled so that they can be screwed down while the glue is still wet. The two panels completing the

Fig. 4. Advanced stages in construction. (a) and (b) give details of the back panels and vent. The upper horn opening must be finished as the lower. (c) shows the appearance from the rear. The rectangular panels forming the exit path from the horn can be cut larger than required and trimmed with the saw when glued in place.
compression chamber should be of $\frac{3}{4}$ in ply. (The drive unit must be wired to external terminals before fitting the second panel.)
Resonances. Any concrete flanges that overlap the wood should be knocked off gently with a hammer. When satisfied that the concrete edges are clean, turn the enclosure on one side and run a stream of glue along all the wood-cement junctions. This procedure must be followed for each side, allowing each 'run' to dry while the enclosure is horizontal.

Now, standing the enclosure upright, tap the front panel with a finger. Note the dead sound-it is high-pitched, metallic and of no perceivable duration. Test each concrete panel in turn. The same should be done for the plywood panels.

If a resonance is found which suggests hollowness, then bracing must be fixed as in the case of the speaker mounting board. Such resonances, if left, will seriously colour upper bass frequencies.

Finally, the external concrete surfaces can be painted.
Fitting against skirting boards. There are four possibilities:

1. Cut out a suitable section from the back compression chamber.
2. Stand the enclosure on a triangular plinth raised above the skirting board.
3. Remove the skirting that is in the way. 4. Stand the enclosure against the skirting and fit wood strips in the gaps between the walls and horn.
The latter is the simplest way.

Treble speaker

In deciding what treble unit to use with the bass horn the main criteria for consideration are sensitivity, distortion. sound dispersion and frequency range.

Fig. 5. Two panels of $\frac{3}{4}$-in ply complete the compression chamber. The angle formed by the apex of the triangle must of course be $\geqslant 90^{\circ}$ and 9 -in wide panels were satisfactory. When one panel has been screwed and glued bracing blocks can be liberally fitted between the internal surfaces of the chamber. The drive unit must be wired up to external terminals. The compression chamber must be airtight.

Horn loading a treble driver raises its efficiency, linearizes its response, and allows the dispersion pattern to be controlled. Again 1 had recourse to the work of Klipsch. In 1963 Klipsch ${ }^{6}$ published details of a high-frequency horn with a cut-off below 300 Hz , and off-axis response correct for good stereophony. This horn was driven by a pressure unit from a throat lin or less diameter. The area doubled approximately every $2 \frac{3}{4}$ in and ended in a rectangular mouth $5 \frac{\mathrm{f}}{\mathrm{in}}$ $\times 17 \mathrm{in}$. Obviously if a suitable small cone speaker can be found the hom structure can be very simply shortened to match the cone diameter.

The Eagle FR4 driver, although sold as a full-range unit for use in a bookshelf enclosure, has excellent characteristics for use as a mid-range and treble speaker, with horn loading. The manufacturer's frequency response chart shows a $\pm 5 \mathrm{~dB}$ variation in the range 100 Hz to 9 kHz , and a steady decay out to about 17 kHz . A concrete horn was therefore designed to match this drive unit.

Construction of treble horn

Cardboard mould. The horn has flat top and bottom, and curved sides. The diagrams of Fig. 6 show the exact shape and dimensions of the four cardboard pieces required. The templates may conveniently be drawn on thin card-only one of each shape being required. These can be drawn round to transfer the shape to the thick cardboard needed to make the mould. The best cardboard for the mould is the $\frac{3}{16}$-in thick "grocery box" stuff with a corrugated middle layer sandwiched between two thin flat sheets. In preparing the sides of the mould it is helpful to ensure that the corrugations assist rather than hinder the folding. The dimensions given allow for the thickness of the concrete layer and the thickness of the cardboard where the joints are made.

Once the pieces are cut glueing can begin. Evo-Stik "impact" adhesive is best for this, the sides being stuck between the top and bottom.

Although the mould can be used as it stands, it is recommended that the inside be given a layer of varnish so that the wet cement does not cause deformation.
Casting. Concreting is in four stages using a gravel-free mix. The mould should be placed on a flat surface and the bottom surfaced with a $\frac{1}{2}$-in layer of cement. It is a good idea to mark a small screwdriver $\frac{1}{2}$ in up the blade and use this as a probe to ensure a more or less uniform layer. The work must now be left to dry out completely. Next, one of the curved sides can be cemented, in exactly the same manner, but first a layer of Evo-Stik Resin 'W' should be applied to the side of the dried concrete to help bond the new to the old. The mould should be turned on its side while the side piece dries out. Do the other side piece and then the remaining flat piece, applying the wood resin as each new section is formed. Finally, the cardboard may be stripped off.
Throat section. Stand the horn throat down on a piece of $\frac{1}{2}$-in blockboard 6 in

Fig. 6. Dimensions of templates for constructing treble horn cardboard mould.
square and draw round the edge. Drill out the middle section (as specified for the bass speaker board) and fit it like a collar round the throat-a hammer can help if used with due care. When the throat opening is flush with the top of the collar, wood resin should be run round the joint and left to dry. A 6 -in square of $\frac{1}{3}$-in plywood, with a $3 \frac{1}{2}$ in-diameter hole in the centre (again drilled out) can be screwed or glued down over the throat opening. When dry (if glued) the inside of the throat must be concreted to give a proper exponential transition from circular to rectangular cross-section. Wet cement can be applied with an old knife, the four cement "fingers" stopping about $3 \frac{1}{2}$ in from the now circular throat. A file can be used to remove gross roughness on the inside of the horn. One or two coats of paint can be applied to give better smoothness. The FR4 unit can now be screwed on to the horn, and the final assembly is shown in Fig. 7. Sound absorbent material must be fixed over the back of the speaker chassis to prevent unwanted wall reflections.

Crossing over between drivers

The treble horn loads its drive unit quite satisfactorily down to about 300 Hz . The bass horn delivers its output with an increasing amount of distortion as the frequency rises above about 500 Hz . It seems correct therefore to cross over at about 400 Hz and at a rate of not less than $12 \mathrm{~dB} /$ octave.

In constructing a crossover network of the constant resistance variety (where the impedance seen by the amplifier remains more or less constant right through the crossoyer point) there are four variables to

Fig. 7. Completed treble horn.

(a)

(b)

(C)

Fig. 8. Crossover circuits: (a) $\frac{1}{2}$ section parallel network arranged for $16-\Omega$ treble driver; (b) $\frac{1}{2}$ section parallel network arranged for $8-\Omega$ treble driver; (c) $\frac{1}{2}$-section series net work that can be used with $16-\Omega$ treble driver--this is the most efficient circuit but unfortunately the FR4 is no longer being produced in the 16- Ω version. Resistors can all be $\frac{1}{4} W$.

Fig. 9. A speaker in its corner showing hardboard guides fixed with hingesshown from the side in Fig. 5.
consider-the crossover frequency, the load impedance, and values of L and C.

The most difficult component to obtain is a suitable capacitor. Non-polarized electrolytic types specially made for crossover networks come in a very limited range-at the large value end of the scale the choice is either $60 \mu \mathrm{~F}$ or $100 \mu \mathrm{~F}$. If these capacitors are not used the alternative is a monstrous parallel-array of ex-W.D. paper types which will at the
same time be quite expensive. To cut a long story short values of $60 \mu \mathrm{~F}$ and about $3 \frac{1}{2} \mathrm{mH}$ give a network which in theory crosses over symmetrically at about 430 Hz with load impedances of 12Ω or 6Ω depending on whether a series or a parallel t-section network is employed. The capacitor on the treble side was reduced to $48 \mu \mathrm{~F}(3 \times 16 \mu \mathrm{~F})$ to reduce a slight peak in the treble-horn response at the crossover point. Resistors across the driver voice coils, whilst reducing the overall impedance, also reduce the significance of changes in voice coil impedance from the point of view of the crossover network.

Three crossover circuits are shown in Fig. 8. These allow different impedance treble units to be used-I have 8Ω in one channel and 16Ω in the other. Crossover circuits (a) and (b), which I use, may be doctored further still. A small choke-say $250 \mu \mathrm{H}$-placed in series with the 10Ω resistor across the treble unit will remove the shunting effect at high frequencies, thus extending the top. In circuit (b) the 2Ω series element can be bypassed by a $2-4 \mu \mathrm{~F}$ capacitor as well.
Winding the chokes. A 2 -in piece of $\frac{3}{8}$-in diameter ferrite rod (with cardboard discs glued on at the ends) can be wound with 37 ft 6 in 24 s.w.g. enamelled copper wire to give an inductance of about $3 \frac{1}{2} \mathrm{mH}$. The turns must be close and the layers neat. Careless winding will give a sadly low value. The treble boost choke can be
wound similarly—about 10 ft close wound will give $300 \mu \mathrm{H}$.

Notes of the final assembly

Fig. 9 shows the composite horn in its corner-the total cost of materials, including that of the two driver units, amounted to about $£ 17$. The bass enclosure is properly called a driver, the bass horn being formed in conjunction with the walls and the floor:

Three points are worth making in conclusion.

1. The most striking characteristic of the treble unit is a reduction in background noise, for example when playing worn discs, compared with direct radiator treble units. Where there is a significant background noise level this seems to separate out from the music. and any odd clicks are peripheral to the sound image.
2. Provided the bass-horn driver makes fair contact with the corner walls the bass performance is not affected by the hardboard guides which theoretically define the horn mouth and the final flare rate. Considering the size of the enclosure this is an inducement to further experiment. The question remains"What defines the actual lower limit of the bass response?"
3. If the bass enclosure is constructed to the width of the treble horn the whole system can be "cased" to give a very acceptable rectangular structure.

Crossover components

Ferrite rod of $\frac{3}{8}$ in diameter is available from G. W. Smith (Radio) Ltd. Four-inch lengths cost is 3 d , and six-inch lengths is 6d each. To break the rod, first file a shallow notch 2 in from one end. Place a pin on a hard surface, such as a metal ruler, and with the notch facing upwards press the ends of the rod downwards with the pin lying exactly below the notch. This should result in a clean break.

If choke-winding is considered tiresome, 5 mH chokes are available from K.E.F. Electronics Ltd, Tovil, Maidstone, Kent. for 9 s 6 d each. Removing 8 ft of wire will reduce inductance to about $3 \frac{1}{2} \mathrm{mH}$.
$60 \mu \mathrm{~F}$ and $16 \mu \mathrm{~F}$ non-polarized 50 V capacitors are also available from K.E.F. for 4 s and 2 s 6 d each respectively.

REFERENCES

${ }^{11}$ Paul W. Klipsch, "A Low Frequency Horn of Small Dimensions", Jour. Acous. Soc. of America, Vol. 13, No. 2, pp. 137-144, Oct. 1941. 2. F. Langford-Smith, "Radio Designers Handbook". Iliffe. Fourth edition, p. 854.
3. Paul W.Klipsch,"Improved Low Frequency Horn", Jour. Acous. Soc. of America, Vol. 14, No. 3, p. 181, Jan. 1943.

4. Ref. 1, p. 144.

5. G. A. Briggs, "Sound Reproduction", Wharfedale Wireless Works, pp. 95-96, third edition 1953.
6. Paul W. Klipsch, "A New High Frequency Horn", I.E.E.E. Trans. on Audio, Vol. AU-I1, Nov.-Dec. 1963.

Circuit Ideas

Multivibrator timing control

The timing of any multivibrator can be controlled very simply, over a wide frequency range, and without risk to the transistors, by use of a diode and resistor combination as shown below. With reference to Fig. I

Fig. 1. Monostable circuit.

Fig. 2. Astable multivibrator.
it can be seen that in the idle condition the monostable is unaffected since the diode is reverse biased. When triggered, the base of $T r_{2}$ approaches $-V_{\mathrm{CC}}$ volts and diode D_{1} conducts, thus providing an additional discharge path for C_{1}. If R_{V} is large, the circuit is unaffected. As R_{V} approaches zero, so the discharge time is shortened. Fig. 2 shows how the frequency of an astable multivibrator may be varied without altering the mark/space ratio. If R_{V} is large, the circuit is not affected as the diodes are back to back. As R_{V} is reduced capacitors C_{1} and C_{2} alternately discharge through R_{V} thereby increasing the frequency. If desired R_{V} may readily be
replaced by a p-n-p type transistor, or other active device.
L. V. Gibis,

Wellington,
New Zealand.

Measuring zero drain-current coefficient in f.e.ts

It is well known that f.e.ts exhibit a zero drain current coefficient at some particular quiescent drain current. This is known as $I_{d z o}$ but it is not specified by manufac-

Test rig for f.e.t. The unmarked resistor is $15 k \Omega$.
turers for a particular device and the standard method of temperature cycling each device in order to find its $I_{d z o}$ is long, expensive and laborious. The following method is a simple alternative. The f.e.t. to be tested is put in the test rig shown. A 5 ms wide positive going pulse, with a baseline at -10 V is applied to A . The differen-
tial inputs of an oscilloscope are connected between points B and C. The pulse on the gate of the f.e.t. turns it on, the drain current being determined by R_{1} and the pulse amplitude developed across it, and it heats up. Any undershoot or overshoot on the source, compared with that on the gate is due to heating of the f.e.t. junction and corresponding changes in drain current. Therefore to find $I_{d z o}$, the input pulse amplitude is adjusted until a flat top waveform is obtained on the source. R_{3} is adjusted to give the minimum difference between the two input settings to the oscilloscope and therefore prevent overload conditions. The drain current at which this $I_{d z o}$ is obtained is then calculated from the peak voltage across R_{1}.
P. R. Thrift,

London S.W.8.

Comparator for small sine-wave voltages

This circuit, used in a production test, was designed for determining accurately the percentage difference in the output voltages (nominally 150 mV r.m.s.) of two sine-wave $L C$ oscillators operating at 1 kHz and 100 kHz respectively. In use, the input leads are first connected to the 1 kHz oscillator, $R V_{2}$ and $R V_{3}$ then being adjusted for half-scale reading on the meter with $R V_{\text {t }}$ set to the " 0% " mark. The leads are then transferred to the 100 kHz oscillator and $R V_{1}$ moved until half-scale reading is again obtained. The percentage by which the 100 kHz amplitude differs from the 1 kHz amplitude is then read directly off a calibrated scale associated with $R V_{1}$. With values as shown, the model built has a frequency response level from 20 Hz to 200 kHz within $\pm 0.1 \%$, i.e. approximately $\pm 0.0 \mathrm{ldB}$. It may thus also be used for making very accurate frequency-response determinations. $T r_{1,}$ and $T r_{2}$ conduct current in pulses only, at the positive-going peaks of the input signal. The mean value of these pulses, which is registered by the meter, increases very rapidly with signal input voltage, once this voltage exceeds a threshold value. The circuit thus provides very good resolution of small input changes. P. J. Baxandall.

Royal Radar Establishment, Malvern, Worcs.
P. J. Baxandall's sine-wave voltage comparator.

Simple Audio Pre-amplifier

Design with high input impedance for use with radio tuner and ceramic pickup

by J. L. Linsley Hood

The circuit to be described was developed, in response to requests from friends and correspondents, in order to provide, with the minimum cost and complexity, a pre-amplifier suitable for use with a radio tuner and ceramic pickup. It was required that this unit should have low distortion and noise level, and should provide the facilities normally expected in a good quality preamplifier stage-bass and treble lift and cut controls, input selector switching, a switched frequency steep-cut low-pass filter, and a rumble filter giving rapid attenuation below 30 Hz . Also, for convenience in use with a variety of inputs, it was required that the input impedance should be at least $2 \mathrm{M} \Omega$.

Ceramic pickup cartridge matching requirements

Although there can be little doubt that for the perfectionist there is no real substitute for the velocity sensitive (e.g. electromagnetic) pickup transducer, many of the better ceramic cartridges can give extremely pleasing results when suitably matched to a good amplifier and loudspeaker system, and such an arrangement fully satisfies the requirements of a large number of users.

In connection with the use of relatively low input-impedance transistor amplifiers, it has been suggested by a number of workers that a satisfactory performance can be obtained from such piezo-electric transducers if they are connected to the normal 47-100k Ω magnetic cartridge input of a pre-amplifier circuit, and then treated as if they, were velocity sensitive units, with the normal recording characteristic compensation. However, while this may work with some cartridge designs, in many cases the manufacturers of the transducer have taken some care in the design to provide a proper frequency response characteristic, by electromechanical techniques, ${ }^{1}$ on the assumption that a high impedance load ($\approx 2 \mathrm{M} \Omega$) will be used, and, in these cases, a better performance is obtained if the manufacturers' intentions are realised.

Although the provision of adequately high input impedances has been difficult in the past with transistor amplifiers, the growing availability of inexpensive junction field-effect devices has removed this problem, and it is now fully practicable, even without recourse to insulated
gate devices, to design systems with input impedances as high as $10^{11} \Omega$, and the provision of a suitable load impedance for a ceramic cartridge is now quite a straightforward design exercise.

Filter characteristics

Unfortunately, the use of piezo-electric gramophone pickup systems, though convenient in terms of the large voltage
output and the avoidance, by and large, of the need for relatively complex recording characteristic equalization networks, leads to other problems in use. In particular, because they are displacement sensitive devices, such pickups are inconveniently sensitive to the almost unavoidable low-amplitude and lowvelocity vertical and lateral irregularities in the motion of the turntable, and unless an effective high-pass 'rumble' filter is

Fig. I. Active filter circuits: (a) low-pass bridged T; (b) high-pass bridged T; (c) and (d) unity-gain arrangements of (a) and (b).

Fig. 2. Rearrangements of Fig. 1(d): (a) output to filter network taken from tap on output load resistor at point where input-output gain is unity; (b) low-pass filter incorporated in loop of Fig. 2(a).
employed, the reproduction of the recorded signal on an amplifier and speaker system with a good low frequency response is likely to be marred by the presence of a continuous low-pitched background rumble. Also, the mass of the piezo-electric ceramic elements is prone to cause mechanical resonance effects in the region $6-12 \mathrm{kHz}$, which can exaggerate the record surface noise, and a steep-cut low-pass filter can then be very valuable in reducing this background. This type of filter can also be very helpful in a.m. radio reception to minimize sideband 'splash'.

Development of filter design

The use of a bridged T $R C$ configuration, as shown in Fig. I (a), in an amplifier feedback path, to provide an active lowpass filter circuit, was described in Wireless World in July 1969. ${ }^{2}$ The complement of this, shown in Fig. 1 (b), is an equivalent
high-pass filter circuit. However, both of these circuits can be rearranged in unity gain form, as shown in Figs. 1 (c) and (d), and this last arrangement was used in the previous article in a rumble-filter circuit. ${ }^{3}$ Both of these unity gain transformations have an important advantage over the circuit due to Sallen and Key ${ }^{4}$ in that they will operate satisfactorily with a high source impedance, whereas the Sallen and Key filter requires a very low generator impedance for proper operation. It should be noted, however, in passing, that the signal should ideally be applied between the two inputs of the amplifier, whereas, in this transformation, it must be applied between one input and the common earth line. The error in function due to this cause can be ignored provided that the impedance of R_{1}, R_{2} and C_{1} is very much less than that of R_{3} and C_{2} (component nomenclature of Figs. 1 (c) and 1 (d).).

Although the configuration shown in Fig. 1 (d) is that for a unity gain system,

such as a cathode- or emitter-follower, it can be employed with any non-inverting amplifier, provided that the output connection to the filter network is taken from a tapping point on the output load resistor at which the input-output gain is unity. This arrangement is shown in Fig. 2 (a), and has the incidental attraction that in addition to the input high-pass filter stage, an independently operating, switched frequency, low-pass filter can be incorporated within the same loop, as shown in Fig. 2 (b).

In both cases the circuit will require to be preceded or followed by a simple $R C$ filter to provide the desired $18 \mathrm{~dB} /$ octave attenuation slope. The gain/frequency characteristics of this part of the circuit arrangement are shown in Fig. 3.

Complete pre-amplifier

The circuit of a practical pre-amplifier unit, incorporating this type of input filter, and employing an inexpensive epoxy-resin encapsulated junction field effect transistor in the input stage, is shown in Fig. 4.

The preferred rail voltage for this unit is 15 V . This is not critical within a volt or two either way, except that a lower voltage will restrict somewhat the magnitude of the output signal at the quoted distortion level, and rail voltages of 20 or above would exceed the safe working ratings of the transistors in the event of a circuit fault. The few shillings cost of a zener diode to limit the maximum voltage on this line may be a wise expenditure.

Large capacitance electrolytics are employed in the source and emitter bypass networks of the first two stages to avoid unwanted phase-shift errors in the highpass filter loop. Their presence also ensures that both the two input stages are "bottomed' at the instant of switching on, to avoid

Fig. 3. Frequency response characteristics of pre amplifier's low-pass and high-pass filters.

Fig. 4. Complete pre-amplifier circuit. The $4.7 k \Omega$ input resistors prevent short-circuit damage when unwanted sources are earthed.
the inadvertent application of excess voltage to the f.e.t.

Although the d.c. working point of both the input stages is stabilized by d.c. negative feedback loops; from the collector of $T r_{2}$ to the source of $T r_{1}$ through R_{6} to R_{5} and Vr_{3}, and from the emitter of Tr_{2} to the gate of T_{1} via R_{12} to R_{2} and R_{3}; it is also necessary to provide some manual adjustment to the working potentials of the circuit, to allow for the unfortunately wide spread in the slope and gate cut-off point of any f.e.t. used (any n-channel f.e.t. with a negative gate cut-off voltage in the range $0.75-1.5 \mathrm{~V}$ can be employed provided that it has a sufficiently low noise figure). This adjustment is provided by the preset potentiometer $V R_{3}$ across C_{5}, and this should be used, on initial setting up, to fix the voltage on the collector of Tr_{2} to 8 V . Once this voltage has been set for the particular f.e.t. in use, the constructor may replace the pre-set with a fixed resistor of approximately the same value (within 5%).

The gain of the pre-amplifier, at the flat settings of the tone control potentiometers, is entirely determined by the ratio $\left(R_{6}+\right.$ $\left.R_{5}\right) / R_{5}$ at frequencies within the filter pass-band. With the values chosen this gives an overall gain of 10 , which is thought to be adequate for most pickup cartridges and power amplifier input sensitivities. The system can, however, be modified to give an overall gain of 20 , and details of the necessary modifications are given in Appendix 1.

Adjustment to the setting of the volume control alters somewhat the input conditions to the high-pass filter and this produces a very slight change in the slope of the low-frequency roll off. This effect is also caused at maximum gain settings by the use of low impedance inputs, and the extent of this is indicated on the frequency response graph of Fig. 3. This can safely be ignored.

Tone control stage

This is largely based on the modification of the original Baxandall design due to Bailey ${ }^{5}$, and the description of the operation of this given in Wireless World in December 1966 applies to the present design also, the only differences being that a higher loop feedback factor is employed, by the use of a higher gain transistor, and the utilization in the feedback path of the

Fig. 5. Characteristics of tone-control stage
whole of the collector output voltage. This allows the rated distortion figure to be obtained at an output signal level of 1 V r.m.s., over the whole pass-band from 100 Hz to 10 kHz . The gain/frequency characteristics of the tone control stage are shown in Fig. 5.

The output circuit in Fig. 4 is shown for stereo operation. For mono use, the balance control $V R_{4}$ is omitted and the value of R_{21} reduced to 47 ohms.

Hum and noise

One of the unfortunate snags in using amplifier systems with high input impedance connections is that they are extremely sensitive to hum pick-up from stray a.c. fields, and great care is necessary in screening the input leads and in earthing the associated metalwork to the correct points. The use of television-type coaxial cable, plugs and sockets helps to keep the hum pick-up to a low level, and the construction of the whole pre-amp except for its power supply, within a single die cast aluminium box (such as those marketed by Eddystone and S.T.C.) is strongly recommended.

The background noise level (noticeable as hiss) of this circuit is dependent to a large extent upon the noise figure of the f.e.t. Since these devices are, in principle, extremely low noise components, the pre-amplifier background level should be very low. Unfortunately, in the experience of the author, some of the inexpensive plastic encapsulated f.e.ts do not come

Pre-amplifier specification (For ceramic pickup and radio tuner inputs)

up to the specifications of their manufacturers in this respect, and it cannot, therefore, be guaranteed that units of different vintages and different origins will always be as noise-free as one would wish. The f.e.t. specified, the Amelco 2N4302, has a very low noise figure, and should not give any trouble in this respect. (A 100 pF capacitor can be connected across the feedback resistor R_{6} to reduce the noise output from a less satisfactory component.)

Constructional notes

Several units of this design have now been built by different constructors and no problems have been encountered. However, since the amplified signal at the tonecontrol network is in phase with the (high impedance) input circuit with its associated switching, care should be taken to keep the stray capacitances between these two parts of the circuit as low as possible, to avoid high-frequency oscillation.

The preferred layout, in the view of the author, is in a similar form to that of the theoretical circuit, and this can be built, for a single channel, on a single "Lektrokit" $4.0 \mathrm{in} \times 4.75 \mathrm{in}$ pin board. Two such panels, with the associated potentiometers and switches, can easily be accommodated in an 8.75 in $\times 5.75$ in $\times 4.2$ in diecast box (available from G. W. Smith (Radio), Ltd.) which can then be mounted in a more elegant housing.

Appendix 1

Modification to give an overall gain of 20 The rearrangement of the circuit of Tr_{1} and $T r_{2}$ to give $\times 20$ gain is shown in Fig. 6. This involves reducing the value of the lower feedback resistor R_{5} to 470Ω, altering the values of the low-pass filter capacitors $C_{7}, 8,9$, and the arrangement of the collector load of Tr_{2}. The circuit then gives an identical response to that shown in Fig. 3, but at a higher gain.

Appendix 2

Use of the pre-amp circuit with a magnetic cartridge
Although this circuit was specifically

Fig. 6. Rearrangement of input circuit to give $\times 20$ gain. Only the amended component values are given.

Fig. 7. Linear integrated circuit amplifier stage for magnetic pickup. Gain is 10 at 1 kHz . (Numbers in brackets on MC1435P refer to pin connections for the other stereo channel. Circuit arrangement identical. Power supply to pins 14 and 7 feeds both channels.)

designed for the user of a piezo-electric ceramic pickup cartridge, it is expected that circumstances may arise in which it is desired to change over to a magnetic pickup head, and it would be convenient if this modification could be done without major alteration to the remainder of the pre-amplifier circuit.

Since additional amplification will be required, for the typical 5 mV output from the magnetic head, as well as recording characteristic compensation, the most convenient way of doing this is by the use of a linear integrated circuit, with a suitable passive network. Although almost any operational amplifier type of linear i.c. can be used, with suitable phase correction, two particularly suitable types are the Motorola MC1435P and MC1303P, which are electrically almost identical and contain two, independent, amplifier units in a $0.1-\mathrm{in}$, centre dual-in-line pack age which can be mounted on either $0.1-$ in matrix pinboard or printed circuit stripboard. The MC1303P is specifically intended for use as a stereo pre-amplifier and requires $\mathrm{a}+15 \mathrm{~V}$ and -15 V supply. The +15 V can be obtained from the existing supply line, but an additional -15 V line will be required.

The MC1435P l.i.c. requires supply lines of only +6 V and -6 V , and these can be obtained from the existing rail through an appropriate resistive dropper network. A suitable circuit is shown in Fig. 7. The decoupling resistor R_{22} should, in this latter case, be adjusted in value to compensate for the additional current drain. The performance which can be obtained from a linear integrated circuit of this type in an input recording correction network is fully equal to that which can be obtained by alternative means. The resistor and capacitor values quoted give a fit to within IdB of the required R.I.A.A. curve, with an overall gain of 10 at 1 kHz .

References

1. Jones, F., Hi-Fi News, Vol. 14, No. 1 pp. 39-43.
2. Linsley Hood, J. L., Wireless World, July 1969, p. 309, Fig. 7.
3. ibid. p.308. Fig. 4.
4. Sallen, R. P. and Key, E. L., I.R.E. Trans. Circ. Theory, 3, 1955, pp. 74-85.
5. Bailey, A. R., Wireless World, Dec. 1966, p. 601 .

Wireless World Reprints

In response to requests from readers who missed one or more parts of the series of articles on the Wireless World Colour Television Receiver we have produced a reprint of the 13 articles which appeared in 1968-69. It is obtainable, as are the other booklets listed below, from the Trade Counter, Dorset House, Stamford Street, London S.E.1. Prices include postage and packing.

No. 1. High-fidelity Amplifiers by A. R. Bailey (Nov, and Dec. 1966, and May, June and Nov. 1968). Contains articles on 20 and $30-\mathrm{W}$ amplifiers; a pre-amplifier; and output transistor protection. Price 5 s .

No. 2. Stereo Decoder and Simulator by D. E. O'N. Waddington, (Jan. and Oct. 1967). Describes the construction of a stereo decoder for positive or negative power supplies and an instrument for producing a stereo multiplex signal. Price 3s.

No. 3. Portable $1-\mathrm{MHz}$ Frequency Standard by L. Nelson-Jones (Feb. 1968). Presents a design for a frequency standard which is phase locked to the 200 kHz B.B.C. Radio 2 transmissions. Price 3s.

No. 4. Wide-range General Purpose Signal Generator by L. Nelson-Jones (April 1968). Range 150 kHz to 120 MHz in five bands; output attenuator range 100 dB in 20 dB steps $(\pm 0.5 \mathrm{~dB})$; modulation depth 0 to 50% (can be set to within $\pm 5 \%$ of meter indication); max. output 100 mV (from 75Ω). Price 3 s .

No. 5. Low cost High-quality Loudspeaker by P. J. Baxandall (Aug. and Sept., 1968). Can be built for a few pounds! Excellent performance above 100 Hz but is improved if used with a woofer for the low frequencies. Price 5 s .

No. 6. Wireless World Crosshatch and Dot Generator (Sept. 1968). A pocket sized instrument using digital integrated circuits. Price 3s.

No. 7. Wireless World Colour Television Receiver (June 1968-June 1969). Series of articles covering the construction of a hybrid receiver using a 19 -inch tube. Price 35s.

In addition, the following reprints from carlier issues are still available:

Wireless World Oscilloscope: Main frame, X amplifier, E.H.T. unit (March, June, July and August 1963), price 5 s ; No. 1 (audio) Y amplifier (April 1963), price 2s 6d; No. 1 (audio) Timebase Unit (May 1963), price 2 s 6d; CalibrationAlternative E.H.T. Unit (Feb. and Oct. 1964), price 2s 6d; and Wide-band Amplifier (March and April 1964), price 2s 6d.

Wireless World Audio Signal Generator (Nov. and Dec. 1963). Price 3s.

Wireless World Crystal-controlled F.M. Tuner (July 1964). Pulse counting type not suitable for stereo. Price 3s.

Transistor High quality Audio Amplifier by J. Dinsdale, (Jan. and Feb. 1965). Very popular 10W design. Price 6s 6d.

Wireless World Computer (Aug. to Dec. 1967). Eight-bit digital machine for instructional purposes. Price 10s.

Plotting Semiconductor Characteristics

Using an analogue computer and curve tracer to plot transistor and diode characteristics

by W. G. Allen*

In an article by J. B. Swainston* it was shown that rectifier action can be conveniently demonstrated in slow motion by incorporating a diode into an analogue circuit. In the present article it will be shown that, not only can the characteristic of a diode be exploited in this type of analogue circuitry, but the analogue computer can actually be used to obtain diode and transistor characteristic curves. The method is not without limitations, but it is found that the characteristics can be obtained over a useful range using a modest size transistorized computer of the type widely used for educational purposes. When compared with the alternative methods of obtaining characteristics, it will be seen that the present method has the advantages of the high accuracy of point-by-point plotting, together with the speed of the commercial curve tracer.

Diode characteristics

Transistor analogue computers are usually based on a low voltage reference. In case of the machine used in the present investigation (an Electronics Associates Limited TR20) this value was 10 V . The simplest technique

[^8]
W. G. Allen obtained his B.Sc. in physics in 1964 and an M.Sc. in solid state physics in 1966 at the University of Newcastle. He is at present engaged in research in solid state physics for a higher degree at the Rutherford College of Technology in Newcastie. He has lectured in physics, electronics and hybrid and analogue computing at the above establishments for a number of years.

Fig. 1. Basic circuit for a diode forward characteristic.

Fig. 2. Diode forward characteristic using automatic voltage sweep.
for applying a potential difference to the diode is to connect it between a computing potentiometer and the base of a high gain amplifier with a feedback resistor, R_{f} in circuit. This arrangement is shown in Fig. 1.
Under normal conditions as an operational amplifier, the base B is a virtual earth, and so the p.d. applied to the diode is directly related to the potentiometer setting. This p.d. is also connected to the arm input of an $X-Y$ plotter. Since B is a virtual earth, the diode current i passes through the feedback resistor R_{f} and gives rise to a voltage $V_{\text {out }}=i R_{f}$ at the amplifier output O. In view of the inherent phase reversal occurring in this amplifier, it is convenient to add a further inverting amplifier before connecting to the plotter pen input.

An alternative viewpoint is to regard the diode simply as a variable resistor of value $R=V / i$, where V refers to the p.d. across the diode. With a feedback resistor R_{f}, the effective voltage gain becomes $G=R_{f} / R$, and so the output voltage is

$$
V_{\text {out }}=G V=\left(R_{f} / R\right) .(i R)=i R_{f},
$$

as before. The choice of value for R_{f} is to a certain extent determined by the maximum diode current required. In order to avoid overload of the high gain amplifier, it must be ensured that $i R_{f}$ is less than 10 V for a computer with a 10 V reference. In the case of Swainston's simulation of a rectifier circuit, a value $R_{f}=10 \mathrm{k} \Omega$ was used. This limits the maximum current to about 1 mA , which is perhaps an unrealistically low value.

It has already been stated that the high gain amplifier will overload when a certain maximum input voltage is exceeded. Another factor that can cause overload is too high a current i; this can cause the point B to no longer be a virtual earth. It is thus wise to monitor the potential at B, and to stop increasing the diode p.d. as soon as the potential at B increases from zero. Although the amplifiers are usually overload protected, the output voliage $V_{\text {out }}$ is no longer proportional to the diode current beyond this point.
Thus, a certain amount of trial-and-error is involved with the choice of R_{f}, and the range of diode currents that can be accommodated by a given computer. In the present experiments performed on the TR20, it was found convenient to adopt $R_{f}=100 \Omega$ for most diode forward characteristics, so that an output voltage of 1 V represents 10 mA diode current. This would be expected to allow currents of up to 100 mA , but in practice the virtual earth condition was no longer satisfied at currents above about 60 mA . By using $R_{f}=10 \Omega$. a value of about 75 mA can be attained. It was thus considered satisfactory to run the current up to 50 mA , which is a sufficiently high value for most applications.

Automatic voltage sweep

The disadvantage of using the circuit of Fig. 1 is that it is difficult to increase the diode p.d. smoothly by the potentiometer, even though the latter is usually of the tenturn variety. This is slightly offset by the advantage that a good degree of control is available of the p.d. applied to the diode.

A suitable circuit for automatic voltage sweep is shown in Fig. 2. With a voltage of $-10 k$ volts (k being the potentiometer setting) into a unit gain on the integrator (that is, an integrator time constant of one second), a ramp of $+10 k$ volts $/ \mathrm{sec}$ is produced at its output. This is shared between the limiting resistor $R_{l i m}$ and the diode, since B is at virtual earth. In the initial section of the diode characteristic, the resistance is very high and so practically all the ramp voltage is dropped across the diode. On the other hand, when the diode starts conducting and its resistance decreases, a proportionately smaller fraction of the ramp voltage is applied. The overall effect is that the rate at which the characteristic is traced is to
a certain extent self-adjusting. This refinement is particularly important in the case of zener diode characteristics.

The maximum value of $R_{\text {lim }}$ is determined by the maximum value to which the diode current is to be taken. This is because the maximum ramp voltage is of the order of 10 V before overload occurs. On the other hand, there is little advantage to be gained by a large $R_{\text {tim }}$ value, since the plot would then become very slow as the diode resistance decreased. This could, of course, be compensated by increasing the ramp speed, but the flat regions of the characteristic would then be traversed too quickly. For most of the characteristics plotted, the potentiometer was set at $k=0.04$, (giving a ramp of $0.4 \mathrm{volt} / \mathrm{sec}$), and a limiting resistor of $R_{\text {lim }}=30 \Omega$ was used. These values were found to be satisfactory for a wide range of diode types.

The reverse characteristic can easily be obtained by changing the polarity of the input to the integrator. At the same time it is usually necessary to increase the value of R_{f} so that reasonable voltages are produced by the very small reverse leakage currents commonly found. For many germanium diodes, a value $R_{f}=100 \mathrm{k} \Omega$ is convenient.

Fig. 3 shows a reproduction of the characteristics obtained for three common diodes. Since the same scales are used for each, the reverse current of the OA202 is 100 small to be represented (being of the order $10^{-2} \mu \mathrm{~A}$).

Transistor characteristics

The present technique has been applied to produce the common emitter output characteristic for several types of transistor, using the circuit shown in Fig. 4.

As in the case of the diode characteristics, the voltage ramp is applied by means of an integrator. This is the voltage $V_{\text {ce }}$. The base bias current I_{B} is produced by applying a known potential difference to a large base resistor R, the p.d. being obtained from a computing potentiometer connected to the appropriate reference voltage. A convenient value of R is $100 \mathrm{k} \Omega$, since this means that base currents up to $100 \mu \mathrm{~A}$ are then available. The actual resistor used was of the precision wirewound variety $(\pm 0 \cdot 1 \%)$. Since the potentiometer can be accurately set under load by a null method, there is no nced for an ammeter to monitor the base current.

It will be noticed that the limiting resistor $R_{\text {lim }}$ has been omitted. The reason for this is twofold. Firstly, the presence of this component can produce a zero error on the plotter arm due to the base current in the transistor.

Secondly, it will be recalled that $R_{l i m}$ was

Fig. 4. (Right) Circuit for producing common emitter output characteristics.

Fig. 5. (Below) Output characteristics of an OC202 transistor in common emitter mode.

added to prevent the characteristic from being plotted too rapidly during the low resistance regions. This is not an inconvenience for most applications, as this region is at the limit of the active region and is not usually of interest to the designer of linear circuits. For switching circuits, the saturation region is of interest and this is usually plotted on an enlarged scale. When plotting this region using the circuit of Fig. 4, the ramp speed would be appreciably reduced.

Fig. 5 shows a transistor characteristic as obtained on the $X-Y$ plotter. It was found satisfactory to use $R_{f}=100 \Omega$, together with a gain of 20 on the following inverting amplifier. When using a recorder pen scale of one volt per inch, one inch then represents a collector current of 0.5 mA .

It has been demonstrated that a small transistor analogue computer affords a convenient method of obtaining some diode and transistor characteristics. Many common types of diode have been studied with great success, but it must be pointed out that a satisfactory characteristic for a tunnel diode is very difficult to obtain in the

negative resistance region, and the value of $R_{\text {tim }}$ appears to be very critical. The common emitter output characteristic has been obtained for several transistors and the only difficulty was that, in the case of germanium transistors, adequate time must be allowed for the transistor to cool after plotting each characteristic.

This method may he of applicability to other characteristics, but it is felt that the scope of the present investigations (in which I was assisted by G. H. Olsen and E. A. Burrell is sufficient to demonstrate the online possibilities of the analogue computer in this field.

Announcements

The Council of Engineering Institutions announce that the London Engineering Congress, LECO '70, to be held from May 4th to 7 th has been cancelled.
"Principles of Colour Television" is the title of two 3 -week full-time courses to be held at Leeds Polytechnic commencing May 4th and June 8th. Application forms are available from The Registrar, Faculty of Technology. Leeds Polytechnic, Calverley Street, Leeds LSI 3HE. Fee $£ 50$.

BM Marketing International Ltd, Gaydon House, Thriplow. Royston. Herts, have been appointed sole U.K. agents for the C.G.S. Scientific Corporation, of America, manufacturers of a range of dynamic and fatigue materials testing equipment and vibration generating equipment.

Pye T.V.T. Ltd, has received an order from the Post Office for the supply of 12 closed-circuit television cameras, six monitors and control equipment to be used in Manchester's new $£ 2 \mathrm{M}$ parcets sorting office.

Fig. 3. The characteristics of some common diodes

Letters to the Editor

The Editor does nol necessarily endorse opinions expressed by his correspondents

C-D ignition

I was delighted to read Mr. Bolton's letter in the March issue in praise of the C-D ignition circuit described by R. M. Marston in January. Like Mr. Bolton, I had a great deal of difficulty trying to construct a reliable system and I am pleased to report that Mr. Marston's really works. I too have used the Repanco TT5la transformer but wonder whether the circuit will fully realise the claims made for it-after all, at some 300 volts h.t., the charge stored in C_{1} is only just over one half that at 400 volts.

The point regarding possible failure of $T r_{3}$ is indeed a valid one-it has already happened to me! A common method of protecting a transistor against excessive reverse bias is to connect a diode between base and emitter. I am not however too sure whether this expedient can be adopted in this case.

I would be most grateful if Mr. Marston would comment on these points.

D. BURN,

Blackheath,
London S.E. 3.

The author replies

I have not tried a Repanco TT51a transformer in my version of the converter circuit, and can not therefore make a positive evaluation. My general impression, however, is that it will work perfectly well on a 4-cylinder vehicle, but will give unsatisfactory operation (because of its limited power capabilities) in vehicles with six or more cylinders. The output voltage from the TT5la circuit is substantially lower than that of my original circuit, and its coldstart characteristics will not be as good as those of the original design; these characteristics should still, however, be bette, than those obtainable from conventional ignition systems.

As Mr. I. M. Shaw pointed out in the March issue (page 109), and as Mr. Burn now confirms, the design of the trigger circuitry is such that excessive emitterbase breakdown currents may result in the destruction of Tr_{3}. I believe there is also a possibility of damage due to excessive transient forward currents in this transistor. This is clearly a bad design fault on my part, and I apologise to any reader who may have suffered inconvenience as a result of it. The design fault can, however, be readily overcome by simply wiring a 180 -ohm
limiting resistor in series with Tr_{3} base. This modification, which I first mentioned in the March issue (page 111) in replying to letters, should be regarded as a standard design change.

I have received several letters from readers complaining of misfiring with the C-D system. Unfortunately, these letters give little clue as to the actual cause of the trouble. It is probable, however, that it is caused by excessive resistance between terminal (1) of the unit and the "hot'terminal of the car battery. If this resistance exceeds half an ohm or so, it is possible for the s.c.r. to be triggered by the switching pulses of the converter circuitry, as well as from the normal C-B pulses, so that misfiring and power loss takes place in the ignition circuit. To find out if this is in fact the cause of the troubles, proceed as follows.

Disconnect from the distributor cap the e.h.t. lead (i.e., the heavy cable connecting, the coil to the distributor cap) and place its free end roughly $\frac{1}{4}$ in from the chassis (to form a spark gap). Turn on the ignition, and slowly turn the engine through one complete revolution by hand. If the above fault is present, heavy and continuous arcing will occur across the spark gap when the C - B is in the open position.

If the fault is present, thoroughly check the wiring between terminal (1) of the unit and 'hot' terminal of the battery, looking for the cause of the high resistance. The voltage measured between these two points (with the ignition turned on) should not normally exceed a couple of hundred millivolts, and must in no circumstances be permitted to exceed 0.5 volt.

If, after the wiring has been thoroughly checked, the voltage between terminal (1) and the battery can still not be reduced to negligible proportions, and the selftriggering still continues, the fault can be cured by connecting a 250 mA silicon diode

(a)

(b)

Fig. 1. Inserting a diode in the positive (a) and negative (b) versions of the C-D ignition system.
in series with the s.c.r. gate, to reduce the s.c.r. sensitivity. Fig. 1 shows how to connect the diode in the positive and negative earth versions of the unit.

R. M. Marston

Amateurs and television interference

Reference the comments in "World of Amateur Radio" (April) about amateurs tackling their own interference problems, it might not be generally realized that the terms of the licence excludes anyone other than the licensed operator, or another licensed operator, from speaking into the microphone on an amateur station. This is a tremendous handicap when it comes to tackling one's own television interference problems.

I have so far managed to cure most of my own TV interference problems, but one has to fit filters and then ask the television receiver owner to listen or view while one puts out a test call. Often the result is very misleading and not at all like being able to check for oneself.

You will probably say "why not ask another amateur?" and this would most likely be economical because amateurs are very co-operative. However, if one had to pay for this person's time the cost would be still somewhere in the region of $£ 2$ per hour.

I would like to suggest that the time has come to end this rather peculiar rule and allow other people to speak but not to operate the station.
H. S. WOOD, G8SX,

Allerton,
Bradford.

Words, pictures and customs

To quote S. W. Amos from his article on Graphical Symbols (Wireless World February 1970) ". . . a good diagram is worth hundreds of words. . . ."

The quotation in its original form did not qualify the type of diagram. Good or bad any diagram is worth a lot of words, as anyone who has had cause to puzzle over the maze of connections that is the average car wiring diagram will know. As bad as these are, they are never readily swapped for good prose.

Obviously a good diagram is better than a bad one, but in an industry that too often recognizes custom before truth, who will judge good from bad? The British Standards Institution? Wireless World?

Fig. 1. Compare this with Fig. 5 on p. 55 of the February issue.

Fig. 1 is a simple circuit diagram showing the function of a changeover switch. Is the non (British) standard but conventional symbol of Fig. 5, Wireless World Feb. 1970 p.55, preferred? In the same issue, Fig. 8

Fig. 2. Mr. Martin's suggestion for redrawing Fig. 8 of Mr. Amos' article in the February issue.

Fig. 3. A redraw of the audio switch on p. 73 (Feb.) showing the "functional" full-wave rectifiers suggested by Mr. Martin.
p. 65 poorly serves an article which actually proclaims the fundamental importance of careful symbol selection and correct diagrammatic form. Does the 'OFF' press button really lock ON? Rather than list faults, Fig. 2-which is thought would serve this article better than the original -is submitted for comparison.

Lastly Fig. 3 is a re-draw of the "Audio Switch" circuit diagram p.73, Wireless World Feb. 1970 which contained three full-wave rectifiers drawn in a manner which illustrates connection rather than function, but which are customary and standardized.

With a national standards institution that defines this particular circuit form out of existence (See B.S. 204 for "Electrical Bridge" and "Bridge Rectifier" and B.S. 3939 for circuit diagram definitions), then advocates its use in the "Guiding Principles" and justifies this anomaly by reference to custom, it seems we have little hope of improving the low standard of circuit delineation that prevails in industry today. Unless that international institution, the Wireless World, periodically publishes some draughting howlers in order to encourage a competitive reaction and hence an interest in the subject among its readers. A good example to start with would be to
extract the perfectly ordinary power supply components from Fig. 3 p. 100 Wireless World Mar. 1970.
W. W. Martin,

London S.E.9.

The problem of dynamic range

1 was interested to read Mr. O'Veering's article* in the April issue of Wireless World since I too have evolved a practical solution to the problem of dynamic range, but have approached the problem from a different angle.
I have developed the 'Ultimate Fidelity Listening Chair'. The basic chassis on which ten loudspeakers are mounted is conveniently provided by a heavy oakframed wing-arm chair. Mounted on each wing are five units, two 15 in bass units, two 5 in mid-range units and one 2 in highflux tweeter, together capable of handling 120 watts r.m.s. per channel. A special steel framework supports the pre-stressed concrete baffes from within the heavily upholstered armchair wings, since each

[^9]baffle complete with units weighs just over 1 cwt .
The amplifiers are commercially available 150 -watt laboratory units fed from equally conventional sound sources.
Initial experiments showed that nylon reinforced seat belts were necessary to prevent the listener's nervous reflexes propelling him from the chair under heavy transients, and missing the most exciting musical passages.
On the advice of the local family doctor, however, I have now replaced them with an ex-R.A.F. ejector seat, triggered by electrodes placed on the listener's temples. Although the listener is restrained during normal nervous spasms, when the sound pressure approaches that considered to be detrimental to the brain, the rocket propelled ejector seat is triggered by the induced skin potentials, propelling the listener from the listening area and out of danger through a specially constructed roof trap within 10 ms . This arrangement has proved most effective, in fact during the Prom season last year, and as a result of the excellent transmissions from the Albert Hall, I was ejected no less than eight times to the great amusement of my children and the annoyance of my neighbour on whose greenhouse I landed on one occasion, on re-entry.
The big drawback of this method of musical enjoyment however is that, like headphones, full benefit can be experienced by only one person at a time. It is for this reason that 1 am busy developing the 'Ultimate Fidelity Settee' which I hope to report on in due course.
Ivor Nedake
Beaconsfield,
Bucks.

F.E.T. modulators

I read with interest the article on f.e.t. modulators in the February 1970 issue. However, one statement made in the first paragraph bothers me. Here it says: "the relationship between $r_{d s}$ and $V_{g s}$ is parabolic". I agree that many things in f.e.ts relate to one another in a parabolic way but the parameters mentioned above do not.

To substantiate my objection I refer to "Field-Effect Transistors" by L. J. Sevin, page 41 , eq. $(2,30)$ and in all modesty to my own paper "The FET as a Voltage-Controlled Resistor" which appeared in the Jan. 1970 issue of $E E E$. Eq. $(2,30)$ in the first reference states that the channel conductance is roughly a linear function of $V_{g s}$ and on this property I elaborated in my paper. It is obvious that converting conductance to resistance does not produce a parabolic relationship.
T. Mollinga,

Hengelo, Netherlands.

Zurced bigestrellens arestilgoingstrons

You're in excellent company with these general purpose instruments, they've just passed their 20,000th sale.
Understandable when you consider their price performance.

The 1420 D.V.M.

$2.5 \mu \mathrm{~V}-1000 \mathrm{~V}$
120 dB noise rejection
0.05\% accuracy

33 conversions per sec
$5000 \mathrm{M} \Omega$ input resistance

The 1400 Scope

Large, bright display 9 modules to choose from for your 'tailor-made' spec. Choice of 3 amplifiers, including differential. 3 time bases, including sweep delay. An X-Y plotter and custom blanks.

Post the magazine's reply-paid card and we'll send you our data sheet of full details.

thePacemaker

 in optimum-reliability electronic components

In the continually-evolving technology of the electronics industry, Carr design and research keep pace with, and often ahead of, the everchanging demands for increasingly sophisticated components. But whilst designs may change from week to week, Carr quality and reliability remain constant, ensuring that complex highprecision specifications are met with absolute and consistent accuracy.

The connectors illustrated here are typical examples from our ranges. We have, of course, many other components of special interest to the computer and communications industries, with rapid, reliable deliveries in bulk quantities assured. Ask for data, or for a visit from one of our Technical Sales Staff.

The application of his wide experience to your problems can help you towards easier, more advanced assembly techniques, with the collateral benefits of worthwhile savings on
time and costs.

CINCH
RADIO AND ELECTRONIC CONNECTORS
OPTIMUM-RELIABILITY COMPONENTS FOR HIGH-PRECISION ELECTRONIC APPLICATIONS CARR fastener carr fastener co.ltd. Stapleford nottingham telephone 0602-39-2661 Telex 37637

Microelectronics
 at the Paris Components Show

Microcircuits seen at this year's Salon des Composants Electroniques were all the result of evolution and not revolution and there were no outstanding products employing new lechnologies. Most manufacturers are increasing the size of their standard ranges, particularly in the m.s.i. field, and there was evidence of the slow permeation of microelectronics into new fields. It was interesting to see that some of the major i.c. manufacturers are combining monolithic and thick and thin film practices to produce complete sub-systems and were not leaving it to firms which specialize in this process. This is only a step away from their producing complete equipments and one is bound to ask how long it will be before all that is left for the equipment manufacturer to do is to add the cabinet and knobs. Even the readout can be integrated if the display is to be in alpha-numeric form.

The Russians were exhibiting again this year and they displayed a full range of linear and digital microcircuits including m.o.s. and hybrid devices. They claim that in some other fields they are ahead of the West, particularly in capacitor manufacture and in c.r.ts for data displays. They exhibited 80 mm (3.2 in) diameter slices of silicon which they are using for microcircuit manufacture. Since manufacturers in the West have only fairly recently gone over to using 2 -inch slices, and in some cases 3 -inch slices, the Russians are advanced in this respect. Also of great interest was a multi-element $1-\mathrm{GHz} 10 \mathrm{~W}$ transistor they had on show. It is very probable that the devices displayed represented the Russian production achievement of a year or two ago.

Microelectrics for consumers

More firms are int roducing devices for the consumer industry. For instance both Texas Instruments and Fairchild have agreements with Philips which will enable them to cash in on Philips' experience in this field.

Ferranti are now in the consumer microelectronics business although one of
their latest products for this market still has strong avionic connections! A German firm commissioned Ferranti to design and produce a microcircuit for servo motor control in model aircraft. It is the type ZN430E which combines the functions of pulse width discriminator, comparator and servo amplifier. The position of the servo motor is determined by the mark-space ratio of the incoming control signal, as is standard practice now in model aircraft control. The circuit measures the mean level of the input signal and compares it with a voltage proportional to the servo motor position. This voltage is derived from a potentiometer mechanically coupled to the motor shaft. Any difference is used as an error signal which is applied to the servo amplifier, and this in turn drives the motor, via an external output stage, in such a direction as to reduce the error voltage to zero. Part of Ferranti's agreement with their German customer states that Ferranti may not sell this product to other users for model control purposes for one year.

The vital statistics of the ZN430E are: a supply voltage of plus and minus 2.5 V and a maximum output current of 30 mA . The "dead band" corresponds to about one degree in 100 degrees of rotation.

Last year a number of microcircuits were introduced for cars and although no new ones were seen this year Marconi-Elliott had an m.o.s. circuit designed for a loy manufacturer who produces model cars. The circuit enables the car to respond 10 a command produced by blowing a whistle capable of producing four tones. The tones could, of course. be generated in many other ways. One tone is used for steer left, one for steer right and one each for forward and reverse traction. The incoming signal is amplified and squared and measured using a reference oscillator and counter combination in a similar manner to the 20 MHz counter/timer described on page 237 of this issue. At the end of each sampling period the contents of the counter are inspected by four gates, one for each channel. If the counter holds a number appropriate $t 0$ a particular channel the correct control is actuated. The control system is activated by the
output of an integrator which ensures that the input signal must be present for a predetermined time before a command is obeyed, thereby rendering the system insensitive to impulsive noises.

Other safeguards ensure that input overtones cannot overflow the counter, causing a motor to be instructed to turn in both directions at the same time. A circuit to do the same job built in d.t.I. would require about 25 packages.

A problem with the design was to keep the frequency of the reference oscillator stable as the voltage of the two 9 V batteries fell. Marconi-Elliott say that it would not have been possible to do this three months earlier because the necessary computer programmes were not then available.

The computer is certainly a very important tool in microcircuit design and it is of particular value in custom designed i.cs. Our front cover this month shows a typical situation in which an engineer uses a computer and a graphic display with light pen to produce a complete microcircuit design.

Another consumer i.c. from MarconiElliott is intended for use in electronic organs. It provides a divide by ${ }^{12} \sqrt{2}$ function so that the twelve basic tones required in an electronic organ can be synthesized from a single oscillator instead of the twelve required before. The company were also showing how standard m.o.s. circuits could be used to make a digital clock.

Texas Instruments are working on a whole range of i.cs for the consumer industry although they were still in the design stage. Fairchild say that they will soon be announcing a high quality stereo amplifier on a single chip intended for use with a separate class A or B output stage.

Ates (Italy) were showing quite a range of microcircuits for the consumer industry. Among these was the TBA381, a $5-\mathrm{W}$ r.m.s. audio amplifier intended for use with a $24-\mathrm{V}$ supply and an $8-\Omega$ loudspeaker Total harmonic distortion is 2% and voltage gain is 26 dB . Another i.c. shown by this company was the TBA365 intended for a.f.c. purposes in television receivers. The chip contains an i.f. amplifier, detector, d.c. amplifier, a.g.c. amplifier and a zener voltage regulator.

For the sound section of TV receivers Ates have the TAA591, consisting of a wideband amplifier, f.m. detector and a.f. pre-amplifier and driver.

A video processing circuit, type TAA 700, was shown by RadiotechniqueCompelec (R.T.C.). This is a Philips design which, incidentally, will also be manufactured in this country by Plessey. The chip contains a video pre-amplifier, i.f. /a.g.c. detector, r.f. /a.g.c. amplifier, noise detector and gate, phase comparator and sync separator, using over 40 transistors-explaining why the circuit is known as the "jungle chip".

SGS showed two microcircuits for television applications; the first, the TAA261, is an audio amplifier with a 4-W output into 16Ω with total harmonic distortion of 10%. The second circuit, TBA271, is a voltage regulator for variable capacitance tuning of TV receivers. Output voltage is between 30 and 36 V with a temperature coefficient of -3.3 to $+1.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

There were many more basically similar circuits for radio and television applications on show some being slight improvements on those mentioned last year.

Microelectronics for Industry

Motorola announced a hybrid 8,192-bit memory at the exhibition although there was not much in the way of technical information available on it. The memory consists of four substrates on which are mounted a total of 36 monolithic chips. Each substrate is identical and contains eight 256 -bit read/write memory chips and an e.c.l. address decoding chip. Each of the four substrates was individually packaged and mounted one above the other. Access time is 120 ns and power consumption is 6 W .

Another microelectronics company about to introduce standard hybrids is Fairchild who will soon be announcing a v.h.f. frequency synthesizer contained in four packages and a 10 -bit digital-to-analogue converter. This latter device employes m.s.i. bipolar chips with both thick and thin film circuitry although here again there is no technical information available as yet.

Still looking at products which are just around the corner Signetics will soon be announcing a range of monolithic active filters and Intel (U.S.A.) will also shortly announce an m.o.s. dynamic read/write memory organized as 512 -words of 2 -bits with a cycle time of 100 ns . In this type of circuit information is stored as a charge on the gate capacitance of the m.o.s. storage elements. This information has to be periodically refreshed, not rewritten, but this is a fairly simple matter. Refresh time is 1 or 2% of the total time.

Marconi-Elliott were showing what they can do in the way of customer-designed hybrid circuits. They displayed a thick film circuit employing 26 -beam-lead monolithic
chips on a 3×1 inch substrate. A five-bit binary word at the input was converted to a two-bit octal readout and also used to select one of 32 output control lines. Lamps connected to the output lines were driven directly by the circuit.
R.T.C. showed an interesting m.o.s. dynamic shift register which could be electrically varied in length from 1 to 64 bits by means of a 6 -bit control word. The register, type FDN126, requires a 2 -phase clock and is compatible with d.t.1. and t.t.l. integrated circuits. Operating frequency is bet ween 10 kHz and 3 MHz .
A bipolar monolithic 64 -bit memory with Schottky diodes connected between the base/collector junctions of the transistors in order to reduce charge storage effect and increase speed was to be seen at the Intel display. The Schottky diode is made by depositing aluminium from the base region to the n region of the collector of each transistor where it forms the metal/semiconductor junction of the Schottky diode. Since the Schottky diode has a lower forward voltage compared to the collector/base junction of the transistor the diode clamps the transistor and diverts most of the excess base current, preventing the transistor from saturating. There is therefore no stored charge in the transistor or the diode, so speed is increased for a given power dissipation. The memory using this process was the type 3101 from Intel which had an access time of 60 ns and a power dissipation of $6 \mathrm{~mW} / \mathrm{bit}$.

The Schottky process is also used in the Texas Instruments range $54 / 74 \mathrm{~S}$ which is a high-speed version of the well-known $54 / 74$ series of t.t.l. A typical gate propagation delay of 3.5 ns is quoted for the new range.

An alternative to the shift register for high-speed shifting was shown by Signetics. This is a gating system that will shift an 8 -bit word in 20 ns. Also shown was a decoder/driver for Nixe tubes with 180 V output transistors.

Apart from the servo amplifier mentioned earlier other new devices on the Ferranti stand were t.t.l. monostables (ZN 1010 E and F) which have an optional lock-out facility. This inhibits the inputs after the monostable has triggered so that the timing period cannot be affected by spurious noise pulses. A gated operational amplifier (ZN402E) with a performance a little below that of the 709 but with an extra input which results in the output being clamped to zero was also shown. Finally they exhibited a monolithic "ring-of-two" voltage reference element which could be used as a constant current source for zener diodes etc. This is type ZN401T.

Secosem (France) had on display a modified version of the 709 operational amplifier which featured built-in frequency compensation and output short-circuit protection. ITT were showing a similar circuit, the MIC741.

A voltage-to-frequency converter in hybrid form was announced by Prana (France) with a conversion ratio of $5 \mathrm{~Hz} / \mathrm{mV}$. The converter has an input impedance of $100 \mathrm{M} \Omega$ and an output of

6 V from $1 \mathrm{k} \Omega$, the type number is CM-AD5.

On the Russian stand among the many items on display was a range of hybrid circuits employing d.t.l. monolithic chips. One type contained 13 four-input NAND gates, another an eight-bit shift register. A three-bit reversible shift register is also available. The typical gate propagation delay of these is 45 ms and a noise immunity of 0.4 V is specified. Also to be seen was a number of m.o.s. circuits. Among these was the K160 series consisting of gates and flip-flops with propagation delays of $0.4 \mu \mathrm{~s}$.

Monsanto were showing a monolithic seven-segment alpha-numeric display using light emitting diodes Power consumption is only $8 \mathrm{~mW}(1.6 \mathrm{~V}$ at 5 mA$)$ per segment. Each package measures about $6 \times 4 \mathrm{~mm}$ and is potted in clear epoxy resin. It is understood that the display, called MAN-3, costs about $£ 3$ per character.

Microsystems International (Canada) had on display a push-button, or touch-tone, telephone system which used a circuit designated QGL4B which combines tantalum thin film wiring, resistors and capacitors with monolithic silicon beam lead chips. In order to describe the circuit it is necessary to know something of the touch-tone telephone system. There are 16 push-buttons arranged in a four-by-four matrix and there is a separate frequency assigned to each row and each column of buttons. The row frequencies fall in a low band 697 , 770,852 and 9.41 Hz and the column frequencies are in a higher bảnd, 1209, 1336,1477 and 1633 Hz . Pressing any button causes the frequencies associated with that button's row and column to be transmitted.

The QGL4B has two monolithic amplifiers with twin-tee feedback networks that cause them to oscillate at the frequency determined by the value of components in the twin-tee filter. One amplifier and filter combination provides the low-band, and the other amplifier the high-band, of frequencies. The push buttons select different resistor values in the twin-tee filters to cause the necessary frequency shift. The circuit drives its output along the same two wires which are providing the power supply for the circuit and it is arranged, using a diode bridge, that it does not matter which way round the two wires are connected. Because of varying line lengths the impedance into which the amplifier has to work varies enormously, as does the power supply. In spite of these variations the output of the unit is maintained to within 0.2 dB and the frequency held to much better than 5% of the desired value.

If the gain of the amplifiers in the QGL4B is lowered by altering internal resistor values the amplifiers instead of being oscillators become active filters. The circuit can then be used to demultiplex signals from touch-tone telephones.

For those interested in statistics: of the 784 companies exhibiting at the Salon (about 5% more than last year) 364 were French, 120 American, 108 Germian, and 64 British.

News of the Month

Displays-the answer?

Colour change displays using liquid crystal have been made in the Marconi research laboratories. (We reported work done by R.C.A. in using liquid crystal for information displays and detecting temperature changes on page 222 of the July 1968 issue.) Liquid crystal is a transparent liquid with a regular crystal-like structure in that all the molecules "point" the same way (nemantic structure). When a voltage is applied across the liquid ions move through it and disrupt the regular structure causing a colour change from transparent to white. When the voltage is removed the liquid returns to its transparent state.

Displays have been made by sandwiching a very thin layer of liquid crystal between sheets of glass. The patterns to be displayed can then be held as an invisible conductive pattern on the glass and is made visible when a voltage is applied to the pattern.

The voltage requirement of liquid crystal is low and is compatible with standard logic levels. Bright ambient lighting does not affect the clarity of the display.

The work at Marconi has resulted in a liquid crystal which changes from green to blue when a voltage is applied; no dyes are used. Marçoni say that other colour displays should result from the work being carried out although more research is needed to increase the speed for some applications.

Nuclear-powered
 heart pacemakers

Trials of nuclear-powered heart pacemakers have now started in the U.K. and two successful animal implants have taken place. The animals concerned, both dogs, have so far responded well. These implant experiments are an essential part of an exhaustive joint technical development programme by the Department of Health \& Social Security and the Atomic Energy Authority. If successful, the programme will permit patients suffering from "heart block" to be fitted with pacemakers powered by nuclear batteries having a design life exceeding ten years, in place of the short life (approximately one to two years) chemical batteries that are currently used.

Heart pacemakers have been used for over ten years to maintain the heartbeat of patients suffering from "heart-block". This disease, the failure of a bundle of
nerves in the heart, can be overcome by using a pacemaker to provide the minute rhythmic electrical pulses normally transmitted through the nerve bundle.

The nuclear battery, which was developed at Harwell, utilizes the heat from the radioactive decay of a small quantity of plutonium- 238 to generate power from a miniature semiconductor thermo-electric converter. The complete battery is two inches long and about half an inch across. It weighs about an ounce. There is no radiation hazard to the patient, or to anyone else, from the small quantity of plutonium used and the battery is fully encapsulated to prevent the escape of radioactive material or attack from body fluids. The pacemakers used in the trials are special units coupled to the Harwell battery through a voltage changing circuit developed at Aldermaston. The nuclear battery was developed at Harwell in close collaboration with the Institute of Cardiology and the National Heart Hospital.

GEE chain to close

The famous GEE navigation system which was developed to get bombers safely and accurately to the target and back again during World War II was taken out of service on March 26 th, ending a 28 -year chapter in aviation history.

The system consisted of ten transmitting stations which operated in pairs providing accurately timed radio pulses. The receiver in the aircraft measured the time of arrival of the pulses enabling the aircraft's position to be quickly determined by referring to GEE charts.

New master for B.C.S.

J. D. Platt has succeeded H. E. Barnett, who has retired from public service, as director of the British Calibration Service. Mr. Platt, who was born in 1916 at Newcastle-on-Tyne, received his early engineering training at Siemens Bros., Woolwich, and at the Woolwich Polytechnic. He has been in the Civil Service since 1939 on inspection and quality assurance of electrical and electronic equipment. Mr. Platt spent eleven years at the Harefield Laboratory of the Aeronautical Quality Assurance Directorate specializing in electrical measurements and testing. He has been
with the Electrical Quality Assurance Directorate (formerly E.I.D.) since 1958. Latterly, as Head of the Components Department of E.Q.D., he has been closely associated with the B.S.I. in the implementation of the Burghard Report with responsibility for the overall inspection surveillance arrangements for BS 9000 in the electronic components industry.

To date thirty laboratories, covering measurements in many fields, have received approval. Laboratories for d.c. and I.f. measurements are: Ferranti Ltd., Wythenshawe; G.E.C. Measurements Ltd., Stafford; Marconi Instruments Ltd., St. Albans; Mann Components Ltd., Wymondham; The Solartron Electronic Group Ltd., Farnborough; Atomic Energy Research Establishment, Harwell; University of Leeds; G. \& E. Bradley Ltd., London N.W.10; H. W. Sullivan Ltd., Orpington; Welwyn Electric Ltd., Bedlington.

For h.f. electrical measurements the approved laboratories are: G. \& E. Bradley Ltd., London N.W.10; Aveley Electric Ltd., South Ockendon; Electrical Quality Assurance Directorate, Bromley; Marconi Instruments Ltd., St. Albans.

Other approved laboratories carry out optical, fluidic and mechanical measurements.

Thermionic products still hold sway at E.E.V.

In an age when it is generally assumed that semiconductors are rapidly taking over electronic control in industry, the English Electric Valve Company is trying to cope with increasing demands for more thermionic devices. At their Lincoln works, where 336 operatives are employed, there is scant regard for semiconductors and even their own process control equipment is based on a well tried method of mechanical sequence switching. Despite this, turnover for the

High frequency processing of a magnetron cathode at E.E.V's works.

last financial year reached an all-time record of over $£ 1 \mathrm{M}$.

Bulk of the orders comes from areas where heavy current control is required, in car factory spot welding equipment and traction motor speed control. These are mainly for the E.E.V. ignitron, a high-current rectifier with a mercury pool cathode, usually in a water-cooled envelope. E.E.V. claim to have 80% of the ignitron market in this country.

The operating gap between the low-current end of the ignitron range and the point where high-power thyristors take over is where the thyratron, a gas-filled glass rectifier, still finds a place. There has been no decline in the call for thyratrons over the past ten years, mostly as replacements in existing equipment.
E.E.V.s Lincoln factory is also producing magnetrons up to 2 MW peak for ground radar, an " S " band 2.5 kW magnetron and a linear accelerator with an 8 MHz tuning range. Also a 40 W magnetron and duplexers for use in " X " band marine radar.

A new development by E.E.V. is a 1 kW c.w. magnetron for r.f. cooking. This features a cathode with a 5 -second warm-up time. Some have already been incorporated in commercial cooker designs.

Telecommunications development plan

Over $£ 4 \mathrm{M}$ is the contribution being made by the National Research Development Corporation for research into a system which "will radically alter telecommunications manufacturing methods".

Total cost of the project is nearly $£ 9 \mathrm{M}$

A printed circuit layout aid is shown below which was developed by Alfred Clark of the Aeronautical Division of Marconi at Basildon. It enables a positional accuracy of about 0.1 mm to be consistently maintained. The aid, which employs a nickel. reference grid, is available from ChartpakRoiex.
and the remaining $£ 4 \mathrm{M}$ or so is being provided by the Plessey Company. Work on the system in Plessey's laboratories envisages the use of advanced stored programme control principles (SPC) in future telephone exchanges. The first full-scale model of an SPC exchange now being started at the group headquarters in Liverpool will demonstrate the interdependence of data processing technology and electronic switching.

Research studies, begun in 1964, led to a new overall approach to systems and control involving new techniques in real-time software programming, in processor design and in telecommunications switching practice. Stored programme control is the use of software and processors for the control of automatic exchanges. It is thought that SPC will be used increasingly from 1975 onwards.

Colour TV tube patent extension refused

Mullard's level of investment in TV colour tube production stood at $£ 10 \mathrm{M}$ according to J. C. Akerman, head of Consumer Electronics Division, and the break even point had not yet been reached. He was giving evidence in the High Court last month in the petition by Philips Electrical, of London, and N.V. Philips Gloeilampenfabriken, of Eindhoven, for a second extension of their patent for colour television tubes, Philips were making application for a second extension because since the first was granted in 1965 for four years, the expected number of 1.35 M colour sets had not been sold and the patentees pleaded therefore that they had not received sufficient recompense. They were seeking an extension of the period by another two-and-a-half to three years. Opponents of the petition were Asahi Glass Company of Tokyo. The application was rejected by the Court but Philips intend making a fresh application on different grounds. It is understood that supporting evidence for the Asahi Glass Co. was given by the Radio \& Television Retailers' Association.

Shipboard Skynet terminal

GEC-AEI (Electronics) have been awarded a contract by the Ministry of Defence, for the development of a small shipborne satellite communications terminal (SCOT) to operate in the Skynet system*, and provide secure communication links between small ocean-going warships and the U.K. The paraboloid aerials, will be only 3.5 ft in diameter, and, while designed as part of the Skynet system, will be capable of operation through the American Defence Communication Satellite system should the need arise.

SCOT consists of two stabilized and

[^10]

Engineers from several countries have a look at the aerial system designed for the communications satellite Intelsat-4.
fully-steerable dish aerials to be mounted one on each side of a ship's mast. No active communications equipment will be mounted on the aerials, but will instead be located in an unmanned engineering cabin at deck level, and connected to the dishes by a low-loss waveguide run. This arrangement should lead to high reliability and will make all elements of the system readily accessible for maintenance.
The aerials, each protected by a double skinned radome, will be stabilized against ship motion by a modified version of the inertial unit devised for the Black Arrow rocket.

All operational controls will be provided on a control console in the ship's main communications office, from which an operator will be able to acquire the satellite and select the correct receive frequency. He will also be able to switch on the transmitter and spot any faults without needing to visit the equipment cabin.
The original concept of SCOT was formulated in the Admiralty Surface Weapons Establishment, Portsdown, and an experimental model to prove the feasibility of a miniaturized terminal has been operating through geo-stationary satellites for the last twelve months. This experimental work has been so successful as to justify embarking on a programme leading into full development and production with the minimum of delay.

Domestic radio /TV show

Running concurrently with the annual conference of the Radio and Television Retailers' Association held in London last month at Grosvenor House, Park Lane, was a three-day exhibition of radio, television and electrical appliances for the domestic market. This was the first occasion for a number of years that the six major manufacturing groups, B.R.C., Decca, G.E.C., ITT/KB, Philips and Pye, representing a dozen or more brand
names, had exhibited under one roof. Perhaps they had taken heart from the theme of the conference, "Unity for the $70 s^{\prime \prime}$.

The total number of exhibitors was over forty and there was some speculation that this show could be the forerunner of an annual spring event which would replace the fragmented autumn trade show. This idea was hotly denied by the major manufacturers who have already laid plans for this year's trade shows. While most makers were unenthusiastic over the amount of business the exhibition brought them, there could have been little joy for the retailer either, since all the attractive colour sets on view are still strictly on ration.

Electron microscope views moving subjects

Recent developments at the National Physical Laboratory, Teddington, have extended the use of the scanning electron microscope, making it possible to observe dynamic phenomena at high magnification. The Laboratory can now observe continuously the changes taking place in materials subjected to stress. Carbon fibre composites are among the materials to have been observed in this way.

In the scanning electron microscope an electron beam scans the surface of the specimen in synchronism with the spot on a c.r.t. Electrons leaving the specimen are collected and the resultant current is amplified and used to control the brightness of the spot. Since the number of electrons leaving the specimen is dependent on its topography, an image of the surface is displayed on the tube. Hitherto, the electron image display has had to be built up slowly, like a radar display, on a long persistence screen. In the new N.P.L. system a high-speed scanning system is used which produces a bright, flicker-free image on a television monitor tube. The advance has been made possible by improvements in the electron detection system and in the performance of the scanning amplifiers. These improvements can be added without modification to the basic instrument which was a "stereoscan" microscope made by Cambridge Instruments.

Sound in vision

Pye T.V.T. Ltd has reached an agreement with the B.B.C. which will permit them to manufacture the p.c.m. television sound system "Sound in Vision" (See Wireless World January 1969, p. 38 and April 1970, p. 167).

Groovy senescence

"The electric guitar is one primrose path to the hearing aid." Quote from the leader article "Yet More Noise" in the April issue of Hearing.

BBC test tones for sterea receivers

To help with channel identification and the adjustment of cross-talk in stereo receivers, each day (except Wednesday and Saturday) the BBC transmits a 250 Hz signal in the left hand channel from about four minutes after the end of Radio-3 programme until 23.55.

On Wednesday and Saturday each week, a sequence of tone transmissions during a period of approximately thirteen minutes is transmitted to allow specific checks to be made on receivers. Details of these are given below.

1	time	Jeft channel (a)	right channel (b)
	23.42	250 Hz at zero level	440 Hz at zero level
		-	
2	23.44	$900 \mathrm{~Hz} \mathrm{at}+7 \mathrm{~dB}$	900 Hz at +7 dB , antiphase to left channel
3	23.48	900 Hz at +7 dB	900 Hz at +7 dB , in phase with left channel
4	23.49	900 Hz at +7 dB	No modulation
5	23.50	No modulation	900 Hz at +7 dB
6	23.51 .20	Tone sequence at -4 dB : $60 \mathrm{~Hz}, 900 \mathrm{~Hz}, 5 \mathrm{kHz}, 10 \mathrm{kHz}$. This sequence is repeated	No modulation
7	23.52.20	No modulation	Tone sequences as for left channel at 23.51 .20
8	23.53 .20	No modulation	No modulation
	23.55	Reversion to monopho	ic transmission

Notes

The tests will normally start at 23.42 hours, or 2 minutes after the end of programme if this is later.

The schedule is subject to variation to accord with programme requirements and essential transmission tests.

The zero level reference corresponds to 40% of the maximum level of modulation applied to either stereophonic channel before pre-emphasis. All tests are transmitted with preemphasis.

Periods of tone lasting several minutes are interrupted momentarily at one-minute intervals.

The following table indicates the type of check or adjustment for which each test transmission is primarily intended.

1. Identification of left and right channels and setting of reference level.
2. Check of distortion with signal wholly in the $(A-B)$, i.e. S, channel.
3. Check of distortion with signal wholly in the $(A+B)$, i.e. M , channel.
4. Check of A to B cross-talk.
5. Check of B to A cross-talk.
6. Check of A-channel frequency response and A to B cross-talk at high and low frequencies.
7. Check of B-channel frequency response and B to A cross-talk at high and low frequencies.
8. Check of noise level in the presence of pilot tone.

Notes

With receivers having separate controls of sub-carrier phase and cross-talk, the correct order of alignment is to adjust first the sub-carrier phase to produce maximum output from either the A or the B channel and then to adjust the cross-talk (or 'separation') control on tests four and five for minimum cross-talk between channels.

With receivers in which the only control of cross-talk is by adjustment of sub-carrier phase, this adjustment should be made on tests four and five.

Adjustment of the "balance" control to produce equal loudness from the A and B loudspeakers, is best carried out when listening to the announcements during a stereophonic transmission, which are always made from a centre-stage position. If this adjustment is attempted during the tone transmissions, the results may be confused because of the occurrence of standing-wave patterns in the listening room.

Exhibitors at the I.E.A. Show

Instruments, electronics and automation exhibition at Olympia

The biennial I.E.A. exhibition opens at Olympia, London, on May 11 th for six days. Below are listed the 420 or more exhibitions. Many of them will be displaying equipment from companies for whom they are agents and coniposite exhibits are being staged by several countries so that the products of some 950 manufacturers (20% from abroad) will be on show. Organized by Industrial Exhibitions Ltd. the show is sponsored by five trade associations: Scientific

Instrument Mftrs Assoc.; Radio \& Electronic Component Mftrs Fed.; Electronic Engineering Assoc.; Brit. Electrical \& Allied Mftrs Assoc.; and Brit. Industrial Measuring \& Control Apparatus Mftg Assoc. The equipment on show will reflect the specialized interests of members of these organizations. Admission to the exhibition, which will be open from 10.00 to 18.00 daily, will cost 5 s.
A.8. Electronic Components

A E Electronics
AEG (Great Britain)
A.P. Publications
A.P.T. Electronic Industries

Acbars-Meteor
Accumulatorenfabrik Sonnerschen
Addo
Aga (UK)
Air Control Installations
Airborne Instruments Laboratory
Airtech
Aladdin Components
Albert Measurements
Alden Metal Products
Alispeeds
Alma Components
Almagarns Company
American Embassy
Ampex Great Britain
Amphenol
Andermann Group of Companies
Apollo Electronics
Appliance Components
Arcolectric Switches
Ariel Pressings
Aristo-Werke
Arkon Instruments
Arrow Electric Switches Associated Automation Astralux Dynamics
Ates Componenti Elettronici
Austen, Charles, Pumps Automatic Control Engineering

Automation
Autonetics
Avdel
Aveley Electric
Avery, W. \& T.

8 \& K Laboratories
B. \& R. Relays

Bailey Meters 8 Controls
Baird \& Tatlock
Bakelite Xylonite
Barden Corporation (UK)
Barr \& Stroud
Batley Valve Company
Bell \& Howell
Belling $\&_{1}$ Lee
Benney Electronics
Blak eborough, J., \& Sons
Blundell Harling
Bonnella. D. H.. \& Son
Bonnella, D. H.. 8
Bourns (Trimpot)
Bowthorpe-Hellerman
Bowthorpe-Hellermann
Bribond Printed Circuits
Bribond Printed Circuits
Britec
Britec
Britimpex
British Aircraft Corp.
British Hovercraft Corp.
British Insulated Callender's Cables
British Physical Labs
British Rototherṃ Company
British Sonceboz Company British Steam Specialities Brookdeal Electronics

Brooks Instrument
Bryans
Budenberg Gauge Company
Bulgin \& Company
Burgess Micro Swirch Co.
Bush Beach \& Segner Bayley
C.G.S. Resistance Co.

Cadmium Nickel Batteries
Cambion Electronic Producis
Cambridge Consultants
Canada
Carborundum Company
Carlingswitch
Chance Pilkington Optical Works,
Channel Electric Equipment
Chart-Pak Rotex.
Ciba (A.R.L.)
Circuit Integration
Circuit Integration
Clare Electronics
Clemac
Clemac
Cole Electronics
Comark Electronics
Computer Instrumentation
Computer Memory Sysiems
Computer Technology
Computing Techniques
Contraves AG
Control Instruments
Controls \& Automation
Cornerstone Hawthorn Baker Cossar Electronics

Counting Instruments
Coutant Electronics
Crane
Crouzet England
Croydon Precision Inst.
D-Mac
Dana Electronics
Dansk Industri Syndika
Data Dynamics
Davu Wire \& Cables
Davy \& United Instruments
Dawe Instrument
Daystrom
Deac (Great Britain)
Dek Printing Machines
Delta Controls
Deursche Export
Diamond H Controls
Digital Equipment Company
Digital Systems
Draper, B., \& Son
Dresser Manufacturing
Dubilier Condenser Co.
Dubilier Condenser
Dymar Elecrronics
Dynameo

EMI
East Grinstead Electronic Components
E.F.C.O.

Efco
Electrical \& Electronics Trades Directory Electricity Council

One of the Levell TG200 series of RC oscillators covering 1 Hz to IMHz in 12 ranges.

Six digit counter timer type TSA6636/3 from Vermer covering frequencies up to 40 MHz .

Solartron digital multimeter, type LM1240, which has 26 ranges.

This carrier servo generator introduced by Prosser Scientific Instruments has a frequency range of 0.0008 Hz to 200 kHz and provides a two phase modulated output.

Dymar modulation meter, type 785, for narrow deviation mobile v.h.f. and u.h.f. radio telephone transmissions.

A new digital frequency meter, type 801 M , introduced by Racal Instruments capable of direct gating throughout the range 10 Hz to 125 MHz .

Electricole
Electro Mechanisms
Electrographic
Electronic Associates
Electronic Engineer
Electronic Flo-Meters
Electrosil
Electrothermal Engineering
Emerson \& Cuming (UK)
Endress + Hauser (UK)
Engel \& Gibbs
Engineering Enterprises
English Glass Company
English Numbering Machines
Environmental Equipments
Epsylon Industries
Erg Industrial Corp.
Erie Electronics
Ether
Eurogauge Company
Eurotherm
Ever Ready Company

FR Electronics,
Facit-Odhner Electronics
Fairchild Semiconductor
Feedback
Fenlow Electronics
Ferranti
FieldTech
Fife County Council,
Filhol, J. P
Fischer \& Porter
Fisons Scientific Apparaıus
Foxall, T., \& Sons
Foxtboro-Yoxall
Frys Metals

GEC-Ellioft Automation
G E Electronics (London)
G.E.C. Electronic Tubé Company
G.E.IS
G.E.I.S

General Automation
General Instrument (UK
General Radio Co. (UK)
Geber Scientific Instrument Co.
Gore. W. L., \& Assoc. (UK)
Greenpar Engineering
Gresham Lion Group

Guest Electronics

Hallam, Sleigh \& Cheston
Hartmann \& Braun AG
Harwin Engineers
Hassett \& Harper
Hawker Siddeley Dynamics
Hengstler, J., Company
Hengstier, J., Com
Hewlett-Packarn
Highland Electronics
Highland Ele
Hird-Brown
Hird-Brown
Hoffmann, J. H
Hoftmann,
Honeywell
Honeywell
Houchin
Houchin
Huber J.J
Huber J.J.
Hugh Instruments
Hymatic Engineering Co.

ITT Components Group Europe
117 Electronic Services
1.P.C. Electrical-Electronic Press

Imhof
Impectron
Imperial Smelting Corp.
Industrial Staff
Intek Charts
Interdata Inc.
Intertechnique
Irish Export Board

Jermyn Industries
Juniper Journals
K.D.G. Instruments

K \& N Electronics
K.S.M. Electronics

Kalle Controls (GB)
Kemo (Consultants)
Kent. George
Kerry Uitrasonics
Kinetrol
Kistler Instruments
Klippon Electricals
Kodak
KOVO Foreign Trade Corp.
Kynmore Engineering Co.
L.T.H. Electronics

Landis \& Gyr
Lan-Electronics
Leach Relals und Elektronik

Leeds \& Northrup
Leesona
Leland Leroux
Lemosa
Levell Electronics
Lewis, H. K., \& Company
Licon Electronics
Light Laboratories
Lindsey, C. S.
Litton Precision Products
Lloyd Instruments
Lloyds Bank
London Electrical Mig. Co
Lund Bros. \& Company
Lucas, Joseph, Electrical
Lyons. Claude

M.B. Metals

M.C.P. Electronics
M.L Industrial Products

McMurdo Instrument Co.
Magnetic Devices
Mallory Batteries
Mann Components
Marconi-Elliott Microelectronics
Markem (UK)
Markovits, I.
Martin-Ivo
Mayes, W. H. (Electronics)
Mercantile Leasing Co .
Meyer, Wm. A.
Micro Consultants
Microwave International
Microwave Int
Midand Bank
Mills \& Rockleys (Electronics)
Milton Ross Company
Milton Ross Company
Mine Safety Appliances Co.
Model \& Prototype Systems
Modern Precision Engineers
Modulex 3-Dimensional Planning
Mohawk Data Sciences
Montford Instruments
Moore Reed \& Company
Motorola Control Systems
Motorola Semiconductors
Maldivo
Mullard
Multitone Electric Company
Mycalex Instruments
N.S.F

National Westminster Bank

Neoflex
Newmarket Transistors
Nore Electric Company
Norgren, C. A.
Normalair-Garrett

Oliver Pell Control
Oltronix UK.
O.M.R.O.N. Div. of I.M.O. Precision

Controls
Optical Works
Orbit Contols
Oxley Developments Co.
P.C.D.
P.S.B. Instruments

Painion \& Company
Palmer Aero Products
Pedoka
Penny \& Giles
Pergamon Press
Permanoid
Phills rick/Nexus Research
Photain Controls
Pignone Sud S.p.A.
Plannair
Plasmoulds
Plessey Company
Poddy. Paul
Post Office Telecoms
Precision Instrument (UK)
Planer, G.-V.
Proper Equipment
Prosser Scientific Instruments
Publisher's Association,
Pye Switches
Pyrotenax

Quickdraw Company

[^11]Rivlin Instruments
Rosemount Engineering Co
Ross, Courteney \& Co
Royal Worcester Industrial Ceramics

SASCO
SGS (United Kingdom)
SIRA.
Sangamo Weston
Scientifica \& Cook Electronics
Sealectro
Searle, G. O., \& Company
Semiconductor Specialists Inc.
Serck Glocon
Service Electric Company
Servo Consultants
Servomex Controls
Shackman, D., \& Sons
Shaw Publishing Company Shipley Chemicals
Siemens (United Kingdom)
Sifam Electrical Instrument
Silver. Peter, \& Sons
Simplifix Couplings
Sirco Controls
Sivers Lab
Skan, H. V
Small Power Machine Co.
Smiths Industries
Smiths Industries
Solartron Electronic Group
Solartro
Solidev
Souriau Lectropon
South London Electrical Equipment
Southern Instruments
Southern Watch Bi Clock Supplies SOVIREL
Spear Engineering Company Special Products Distributors Spectronics
Spembly Technical Products
Sperry Gyroscope
Sprague Electric (UK)
Sprague Electric (UK)
Standard Telephones \& Cab
Superior Electric Nederland
Surrey Steel Components
Symonds Engineering Co.
Symot
T.E.M. Sales

Tally
Tavior Instrumient Companies
Techmation
Techna (Sales)
Technograph \& Telegraph
Technology, Ministry of
Tectonic (Efectronics)
Tektronix U.K.
Teterelay (Sales)
Teierelay (Sales)
Texas Instruments
Texas Instruments
Thermal Electric Int
Thermo Electric Int.
Thorn Electrical Industries
Thousand \& One Lamps
Tinsley. H. \& Company
Topper Cases
Tranchant Electronics'(UK)
Transitron Electronic
Trend Electronićs
Trist, Ronald. Controls
Trumeter Company
Tufnel
Turner Electrical Instruments
20th Century Electronics

Union Carbide
Unit Data
United Trade Press

Veeco Instruments
Veeder-fioot
Venner Electronics
Vero Electronics
Vision Engineering

Wadsworth, Leonard, \& Co.
Wallace \& Tiernan
Wandel \& Goltermann (UK)
Waresta Electronics
Watkins Johnson International
Watsons Anodising
Waycom
Weller Electric
Welwyn Electric
West Instrument Div. of Guiton Westinghouse Brake \& Signal Co Westool
Westrex Company
Weytringe
Whitelev Electrical
Williams, Henry
Willsher \& Ouick
Wire Products \& Machine Design
Wireless World
Worcester Valve Company

Sound ' 70

A.P.A.E. Show in new surroundings

For the first time since it began 22 years ago the exhibition of equipment organized under the auspices of the Association of Public Address Engineers was held in a different, more central venue, and something should be said first about the effect of the change.

Camden Town Hall, situated in Euston Road adjacent to several main line stations, was much more accessible than was the previous location.

There was a serious attempt to match this exhibition, the only one of its kind in Europe, with those held by larger sections of the radio manufacturing industry. It even had an official opening by Ray Mawby, M.P., Opposition spokesman on telecommunication subjects.

Looking at the products on view confirmed the impression that public address engineering nowadays is hardly likely to be a temporarily installed "lash-up" with plenty of power output to enable the people at the back to hear.

Increasingly the p.a. engineer becomes the sound consultant and the equipment he seeks is required to be an integral part of the building construction, be it a new hotel

Impact 150 W slave amplifier and six-channel mixer unit
or sports stadium. We were told that where architectural and acoustical interests conflict the architectural design need no longer be a compromise. The acoustic deficiencies can be easily and unobtrusively corrected by using the wide range of sound reinforcement equipment at the modern sound engineer's disposal.

The main p.a. system is often linked with other major facilities such as private intercom systems, tone signal paging,

Keith Monks "Phaserite" phase testing equipment
closed-circuit TV, and even coupling to a Post Office telephone line.

Something like 50% of the equipment on display was there to satisfy the demands of the king of musical money spinners-Pop. Large amplifiers of 150 W r.m.s. output, or more, were shown with companion mixer units sporting half-a-dozen inputs each with an array of polished metal controls, some with tell-tale legends such as "Reverb", "Tremolo" and "Echo". Matching loudspeakers had special transducers for bass and organ effects. These carried brand names like Impact and Orange, newcomers to the public address show.

One piece of useful equipment not seen before was the Phaserite phase tester shown by Keith Monks (Audio) Ltd. It was a two-unit device (transmitter and receiver) constructed in two Ever-Ready heavy duty torch cases.

The transmitter emits a train of specially shaped positive-going pulses which, when picked-up by the p.a. system microphone, can be heard in the loudspeakers. If the receiver transducer is pointed towards each loudspeaker in turn the in-phase or out-of-phase condition is indicated visually by a green or red light at the rear of the unit. Both units were battery-operated and used i.cs. In the receiver, the sense of the acoustic signal is detected by two parallel inhibit gates followed by two monostable multivibrators which operate the lamps.

There is an M in Ferguson

It stands for Motorola and you'lit
see it in the Ferguson single standard 3000 colour TV
chassis. It's the mark of Motorola quality and reliability that got radio on the road and helped to put men on the moon.

A few facts:
Motorola is one of the largest semiconductor manufacturers in the world. Principal manufacturing facility and development labs in Phoenix, Arizona: European HQ in Geneva: European factories in France and Scotland

Motorola understands quality and reliability - it was their equipment that provided the essential communication links (radio and TV) between the moon's surface and earth.

That's why there is an M in Ferguson. - it stands for reliability
Motorola Semiconductors Limited
York House, Empire Way, Wembley, Middx.
Tel:01-9030944. Telex: 21740
Motsem Wembley
(M) MOTOROLA

World of Amateur Radio

Intrusion and interference

For many years amateurs have been concerned about the intrusion of broadcast and commercial services into bands allotted exclusively to amateur radio. In particular, the $7-\mathrm{MHz}$ band has given rise to two main complaints. British and European amateurs have long resented unauthorized operation of broadcasting stations in the segment 7000 to 7100 kHz ; while American and other Region 2 amateurs have complained about the high-power Region 1 broadcast stations in the segment 7100 to 7300 kHz beaming signals into North America.

Partly as a result of the R.S.G.B. Intruder Watch (honorary organizer C. J. Thomas, GW3PSM) a number of broadcast and point-to-point stations have been moved out from the 7000 to $7100-\mathrm{kHz}$ band. The Intruder Watch passes information to Minpostel* which in turn advises the administration concerned, or, if this fails. notifies the International Frequency Registration Board of an infringement. Attempts are being made to streamline the procedure so that action can be taken more quickly.

Alleviation of interference to Region 2 operators should also result from recent pressure on broadcasters by the I.F.R.B. In a circular letter (No. 229) this body recently officially drew the attention of broadcasters to harmful interference caused to Region 2 amateur operation in the band 7100 to 7300 kHz , stressing that this contravenes Radio Regulation No. 117 (equality of rights of different services). The F.R.B. has also established a procedure which provides administrations with a basis for action in specific cases of actual harmful interference. All future broadcasting schedules for this band will include a note from the Board specifically reminding the stations of the possibility of causing harmful interference to amateurs.

Aurora and sunspots

That one amateur's meat is another's poison was seldom better illustrated than on March 8th when the B.E.R.U. h.f. contest and a 144 MHz v.h.f. contest were

[^12]running simultaneously. The highly disturbed radio conditions that weekend, culminating in widespread auroral conditions on the Sunday afternoon and evening, meant tough going for the h.f. operators, and the virtual closing of the North Atlantic path into central Canada. But on 144 MHz the aurora produced an "opening" which permitted many contacts, with the characteristic buzz on all signals, over distances up to about 750 miles including contacts with Czech, Swedish and Swiss stations. During such conditions, the 144 MHz signals arrive from, and should be beamed towards, the North.

March 8th was considered one of the longest duration auroral openings recorded in recent years and the R.S.G.B. scientific studies committee is making a special study of contacts made that day (reports to G. M. C. Stone, G3FZL, 11 Liphook Crescent. London S.E.23).

Despite the poor h.f. conditions, some British Commonwealth stations in the B.E.R.U. contest were heard exchanging contact serial numbers between 300 and about 500 . This represents a marked decline on the 1969 event, but this is also to be expected from the gradual decline in sunspot numbers from the peak of the present cycle in September, 1968.

Top-Band season

Those enthusiasts who, each winter, seek to overcome the formidable problems in long-distance communication on the $1.8-\mathrm{MHz}$ band, appear well satisfied with the results of the 1969-70 season. According to the latest DX Bulletins issued by Stewart Perry, W1BB, many unusual countries have been heard or worked. Among those contacted by British amateurs have been 9X5SP (Rawanda), 5Z4LE/HZ (Saudi Arabia), VS9OC (Oman), and VK6NK (Western Australia). During the transatlantic tests on February Ist, ten British stations were among those who "got across". An American amateur reports "sunset" band opening conditions during the noon eclipse on March 7th.

A feature of recent operation on Top Band has been the revival of interest in Beverage receiving aerials using extremely long, but quite low, aerials pointing in the
direction from which it is desired to receive stations. At the far end the aerial is usually terminated through a resistor to earth and extensive radial zounterpoise wires, or efficient earths are desirable. Aerials up to 2600 ft long have been used, but about 1100 ft is more common. A 600 to 700 ft Beverage aerial has been used effectively by (R. F. McLachlan, G3OQT, and J. P. Rogers, G3PQA.

I.E.C. station WF3IEC

During the 35 th general meeting of the International Electrotechnical Commis-sion-the oldest international standards organization in the world-in Washington D.C. from May 17th to 30 th, a special amateur station, WF3IEC, will be operating from Suite 9101 in the Washington Hitton. More than 1400 delegates from 41 countries will be participating in these meetings. The amateur station will be under the supervision of Ed Redington, assisted by members of the Foundation for Amateur Radio. Operation, on a round-the-clock basis, will include s.s.b. and c.w. operation on all h.f. bands except 1.8 MHz . (QSL cards to L. M. Rundlett, W3ZA, Electronic Industries Association, 2001 Eye St., N.W., Washington, D.C.)

In Brief: Prof. Franco Fanti, IILCF, one of Europe's keenest slow-scan TV enthusiasts, recently made contact with a New Zealand station for what is believed to be the longest-distance S.S.T.V. contact yet achieved-he has also recently exchanged pictures with two stations in Alaska. . . . The Bedford Amateur Radio Club is to operate a three-transmitter station (3.5. 7 and 144 MHz), GB3RS. at the Scout Rally Camp at Ampthill Park, Bedfordshire, on May 10th. . . . The GB3GEC $70-\mathrm{cm}$ beacon station in West London now operates on 433.45 MHz Northern Amateur Radio Mobile Society is holding a mobile rally on May 17th (details D. Binns, G3MGI. 80 Gipton Wood Road, Leeds 8). . . . Thanet Radio Society has a mobile rally at the King George VI Park, Ramsgate, on May 5th... . Monday evenings are being established as 70 MHz "activity nights" in the Yorkshire region. . . . The annual commemoration of the 1897 MarconiKemp tests between Lavernock Point, Glamorgan, Flatholme Island in the Bristol Channel and Brean Down, Somerset, will take place on May 17th when the Barry College of Further Education will establish GB3FI on Flatholme and GW3VKL/P at Lavernock Point Holiday Camp operating on all bands from 1.8 to 28 MHz (s.s.b. and c.w.) and 144 MHz (a.m.). A special QSL card containing many details of the 1897 event and five historic illustrations will be sent to all stations contacted. . . . Irish VHF/UHF convention and mobile rally will be held on May 24th at the County Arms Hotel, Birr. Details from R. Williams (EI7AF/GI3UIG), 31 Main Street, Birr, Co. Offaly.

Pat Hawker, G3VA

Aperiodic Loop Aerial

Receiving array for h.f. communications over four octaves

by Philip G. Baker

A unique receiving aerial which provides optimum directional and performance characteristics over a frequency range of four octaves ($2-32 \mathrm{MHz}$, typically) has been developed by E.M.I. Electronics Canada. It consists of eight double onemetre diameter loops spaced 13 feet apart, and each loop has a transistor amplifier fitted in the base. This particular combination results in a constant effective height over the full four-octave frequency range, that is, the pre-amplifier output voltage is constant over the complete frequency range for a fixed incident field strength. Because of the flat frequency response, the aerial has well defined phase characteristics and is particularly suited for a phased aerial system. The aperiodic configuration comprises loop/ pre-amplifier elements in an "end fire" array with an inter-connecting transmission line coupling each element. Outputs at both ends enable the array to "look" both ways simultaneously, if required, or the system can be rapidly switched through 180° with a coaxial relay.

Design philosophy

At frequencies above 100 MHz the problems inherent to receiving and transmitting aerial designs are generally interchangeable except that, perhaps, the radiating element operates with a voltage stress. Below 100 MHz , and to a much greater extent below 30 MHz , this is no longer true because of the effects of atmosphere and galactic noise sources. Although a requirement for free space coupling efficiency remains for the transmitting aerial, it does not for the receiving aerial. For example, at v.l.f. a large copper curtain is necessary for the transmitting array, but a small whip aerial having negligible free space coupling is adequate for receiving purposes.

At frequencies below 30 MHz it is possible to employ a receiving aerial which is electrically small and has a poor free space coupling efficiency, without prejudicing the overall system noise factor. The aerial output noise comes primarily from atmospheric and galactic sources, hence the thermal noise introduced by the aerial radiation resistance is insignificant by comparison, provided the resistance is assumed to be at ambient temperature.

The aerial system noise factor is defined as

incoming atmospheric s / n ratio

aerial output s / n ratio
Tabulated values of the noise factor for six different geographic locations are given below for a single loop element. The atmospheric background noise values for these calculations were taken from the contours given in C.C.I.R. Report No. 65 (Atmospheric Radio Noise Data) and averaged over all four seasons. The two lower frequencies (2 and 4 MHz) were calculated on the basis of night-time interference levels only, since long-haul communications using these frequencies are normally practical only at this time. For similar reasons, the two higher frequencies (16 and 32 MHz) were computed for daytime only. The 8 MHz frequency was taken over a full 24 -hour period.

Two immediate conclusions may be drawn from these tests: that optimum directional characteristics for both long-
and short-haul, point-to-point h.f. communication via the ionosphere are feasible with the E.M.I. loop system, and that the small size of the aerial does not prejudice its performance to any practical extent in most world locations.

With n loop elements arranged in an array the signal amplitude is increased n times, but the pre-amplifier noise only increases by \sqrt{n}, giving further impovement in the signal-to-noise ratio.

Location			requencios		
	2MHz	4MHz	8MHz	16 MHz	32 MHz
	(d8)	(dB)	(d8)	(d8)	(dB)
United Kingdom	2.5	<1.0	2.3	5.5	6.9
North					
America South	<1.0	<1.0	<1.0	5.5	6.9
America	<1.0	<1.0	<1.0	4.2	6.9
Hawaii South East	1.5	<1.0	2.3	5.5	6.9
Asia	<1.0	<1.0	<1.0	4.2	6.9
Africa	<1.0	<1.0	<1.0	3.4	6.9

Each loop is supported by an aluminium tube in which the pre-amplifier is housed.

Fig. I. Directional characteristics of the E.M.I. loop array. Broken lines show elevation patterns and solid lines the azimuth.

The polar diagrams (Fig. 1) illustrate the directional characteristics of the loop array, the elevation pattern being shown as a broken line and the azimuth as a solid line.

The polar diagrams show further that aperiodic loop arrays provide directional characteristics for both long- and shorthaul communications using ionospheric reflection. Long distance reception at higher frequencies in the $2-32 \mathrm{MHz}$ band benefits from the narrow beamwidth and corresponding higher aerial gain. Shorthaul communications, which depend upon acute reflection angles, are generally possible only at the lower part of the frequency range because of the nature of the reflecting characteristics of the ionized layers. The wider elevation beamwidth of the aerial at these frequencies allows signals arriving at near vertical incidence to be received with substantial aerial gain.

Operation in the presence of strong unwanted signals

Each pre-amplifier is designed to handle a peak signal strength in excess of $2 \mathrm{~V} / \mathrm{m}$ without overloading. In the h.f. band this is greater than the signal from a $10-\mathrm{kW}$ transmitter at a distance of one mile over land. Aperiodic aerial arrays yield secondorder inter-modulation products down more than 70 dB , and third-order down more than 100 dB , below two signals of $10 \mathrm{mV} / \mathrm{m}$. This performance compares well with active multicouplers found at most receiving sites.
D.C. power is fed to the loap preamplifiers by the coaxial cable which connects the array to the receiver building, and no other cables are necessary. The pre-amplifiers are designed to operate over external environmental temperatures of from -40° to $+70^{\circ} \mathrm{C}$. They are contained in a sealed unit which plugs into the central tube of the loop from
underneath, thus providing double protection from the weather.

The aperiodic loop aerial system is largely unaffected by ground conductivity and nearby objects, and, as a result, negligible site preparation is necessary. The system requires under 100 square metres of ground area and is easily erected in half an hour. The loops should be located close to the ground (in terms of wavelength) where direct and reflected signals will add in phase.
The low mutual interference between the untuned loop/pre-amplifier elements permits multiple cross array systems
to be constructed. Six 8 -loop arrays can be arranged radially through a common centre point in increments of 30° to provide omni-directional coverage without mutual interference. Both ends of each array can be fed to the receiving building, enabling all 12 outputs to be used simultaneously by numerous receivers. This particular configuration would require a circular site only 30 metres in diameter, and would replace an entire rhombic farm. There is virtually no restriction on the length of the aerial feeder cable, and steerable arrays are easily constructed.

Painless Electronics (we hope)

Occasionally readers say to us "I can't understand a lot of what's in Wireless World"', perhaps adding, if they are getting on in years, ". . . any more." The fact is, if all articles had to be simplified to a standard level they would become excessively long, the technical content of each issue of the journal would be less varied and the more advanced readers would be irritated. In practice we try to steer a middle course. We do, however, recognize that we have many readers, not formally trained in electronics, who would like to be able to get a better mental grip on the technical articles published or on the technology as a whole. We have therefore asked our contributor James Franklin to write a series of short introductory articles on electronics-one page in each issue-on the principle that this could be a gradual,
painless way of absorbing knowledge, in contrast to, say, a "crash" course.

This series, "Electronic Building Bricks", begins next month. It does not follow a conventional text-book approach, but emphasizes the functions of electronic units-as "black boxes"-rather than the circuitry and hardware from which they are constructed. Some fundamental theory comes in, but only where it is strictly necessary for this approach. Circuitry is described in a manner that should be understandable by the average electrical handyman.
But do not think Wireless World intends to "write down" to any of its readers. The author treats his readers as intelligent people who simply do not want to be "blinded by science".

Spring Song

Thomas Roddam discourses on circuits that are really solid

Once upon a time there was a lot of simple books on what was always a joint subject, Electricity and Magnetism. Electricity was described in many of these books in terms of water pipes and tanks. The child, an oldfashioned way of describing the sub-teenager or mini-dropout, cannot see electricity once it gets inside wires; masculine will only be things that you can touch and see :therefore if he is to understand electricity his feet must be firmly set in water. Educationalists were not so thick on the ground in those days and, just as now, some students learned something, some did not. Those were, of course, Imperial days, and, as both Joyce and Wells have pointed out, imperial powers have a cloacal obsession. The Romans built baths and the aqueducts to fill them: in every corner of the globe you can still pull a British chain-the British are a contemplative race. The Americans, always impatient, demand shower-baths wherever they go. In the gracious days, now past, every decent schoolmaster had studied Latin. The philosophy of the Latin grammar demanded water-pipes as the model, even if running water was as remote to the child as electricity.
Water only really works for direct current. Guillemin, in the opening chapter of Communication Networks, published (Vol. 1) in 1931, starts off by saying "The engineer likes to be able to visualize the mechanism of his investigations." His first figure and his first equation are for a mechanical system, not an electrical one. My own feeling, having been around with inductance and capacitance for so long, is that if there is a need for analogues it is a need to be able to draw an electrical circuit to help to understand a mechanical one. However, when I was explaining to one of the handsome and talented people whose names appear on the masthead of this journal that I thought that simple theory deserved a rest, I was assured that spring-heel Jack is a regular reader.* Some of you, apparently, would rather watch an elephant sliding down hill than connect a coil across a battery.

Analogues are models, and they can be dangerous. In any model-making operation

[^13]

Microwaves made easy: Le Pont du Gard. (Courtesy French Government Tourist Office.)

(a)
(b)

Fig. 1. Example taken from Guillemin.
you can hardly avoid leaving out some features of the original and adding some new characteristics. Unless you are careful to stick to the rules of the modelling process you may come to some quite erroneous conclusions. This would not surprise you. The same is true of our everyday components. A resistor is a resistor. A wirewound resistor has some inductance, which we can measure to improve our "model", in this case the drawing we put on our circuit for calculation purposes. But the manufacturer does not usually specify the inductance and he may change his construction, giving us the same resistance with a different behaviour at high frequencies. Clever circuits, which use unspecified characteristics of practical components, live, and often die, under the shadow of this refusal to stick to the rules.

The use of analogy between electrical
systems and mechanical systems is normally developed along one particular path, and is brought sharply to a full stop before the main difficulties arise. I am going to follow this path, but in such a way that the difficulties shed new light on the whole problem. At least I hope so.
The two equations we need are:
Newton's Third Law, $F=m a$,
in which F is the force, m the mass and a the acceleration; and

Hooke's Law.

Hooke's Law applies to springs, or any material which is stretched or compressed by force. For small displacements this is usually a linear elastic deformation. If it is not, Hooke's Law does not apply. The difficulty is that different sources arrange the equation of stress is proportional to
strain in rather different ways. If we have a displacement x we can write
$F=S_{m} x$, in which S_{m} is the stifiness, or $F=x / C_{m}$, in which C_{m} is the compliance.
S_{m} is the material characteristic which appears in the expression for Young's Modulus.

We need also to notice that

$$
a=d v / d t=d^{2} x / d t^{2}
$$

and $v=d x / d t$. Here v is the velocity.
The traditional approach is to write down

$$
F=m a=m d v / d t=m d^{2} x / d t^{2}
$$

Below this

$$
V \quad=L d I / d t=L d^{2} Q / d t^{2}
$$

Contemplation of these two results suggests that if we represent force by voltage, velocity by current, displacement by charge, we can represent inductance by mass.

With an ideal spring, and writing Hooke's Law as

$$
\begin{aligned}
& F=k x \text { we put below it } \\
& V=Q / C
\end{aligned}
$$

and this suggests that capacitance can be represented by a spring, with capacitance inversely proportional to the stiffness.

Resistance is not quite so easy as you think. At least, as I think. My first reaction is to say that it is just the ordinary friction, but the experiment we do to find the coefficient of friction gives us a force which depends only on the loading. A given pressure on a car foot brake produces roughly the same deceleration at any speed. It is viscous drag we must consider, the plunger in the bowl of treacle. Modern practice uses silicone treacle, but it must be a dash-pot, not a slide, to get the essential equation

$$
\begin{aligned}
& F=\rho v \text { which we compare with } \\
& V=R I .
\end{aligned}
$$

Everything in the garden is lovely: a period phrase, well suited to the stage we have reached. Let us look now at Fig. 1, which is taken direct from Guillemin and is, indeed, his Fig. 1. Notice that the mechanical force is shown as applied at a single point and that the electrical circuit has two terminals. The reader may feel that I am being a bit pernickety about this. After all, anyone can see that the other mechanical terminal is earth, the framework. If you really feel that this is a sufficient answer, write down the electrical equivalent of Fig. 2.

Fig. 2. If you know where earth is in Fig. $l(b)$, draw the electrical version of this.

If the analogue technique is any good it should be possible to write down the circuit by a simple inspection operation. This just does not work with the results we have at this stage. The elementary analogue users work on the principle that you should get away from analogues as fast as you can. Get
the feel of an $L C R$ circuit from Fig. 1 and then get stuck into the circuit theory. The only trouble is with those of us who want to make electrical models of mechanical systems so that we can connect an oscilloscope to study the behaviour, or who want to build mechanical filters. We cannot escape. Anyway, if the analogue technique is worth attempting at all, it is worth treating properly.

A sound self-consistent approach is to treat all the systems as four-terminal networks or, more stricily, two-terminal pairs. This sounds classy, but it simply means remembering that each bit has two ends and that the good earth is there below. Let us start off with the mass, drawn now as in Fig. 3. The little rods sticking out at the ends

Fig. 3. Mechanical system : a mass on a friction-free support.

Fig. 4. An inductance in a four-terminal form.
are the two live terminals. For reasons which I do not want to explain at this point the force arrows and the velocity arrows are shown the way they are. Both must be related to the earth line which provides the other two terminals. The rod on the right may be applying a force F_{2} to some other thing, and as action and reaction are equal and opposite, the load will be pushing back with an equal force. The net force on the mass is therefore $F_{1}-F_{2}$.

The equations are now written in the following form.

$$
\begin{aligned}
& F_{1}=F_{2}+m d v_{2} / d t \\
& v_{1}=\quad v_{2}
\end{aligned}
$$

For the circuit of Fig. 4 we have

$$
\begin{aligned}
& V_{1}=V_{2}+L d I_{2} / d t \\
& I_{1}=\quad I_{2}
\end{aligned}
$$

The layout of these equations has been carefully contrived so that it is easy to look at the term by term relationships. A good deal of fuss about nothing, you nay feel, for here are L and m sitting in corresponding spaces, just as we found before.

Now, however, let us look at the spring in Fig. 5(a). Notice that this is not the same as the spring in Fig. 5(b). The spring is assumed to have no mass. This means that the net force acting on it must be zero, because if there were a net force, zero would imply infinite acceleration and we should need to look for a new spring. The net force is simply $F_{1}-F_{2}$, and, as we have said, this is zero. I will not write the equation down yet. The effect of applying force to the spring is to compress it, so that one end moves with

Fig. S. Two ways of using a spring in a mechanical system.
respect to the other by an amount x. We have

$$
F=k x
$$

The compression (or stretch, depending on the sense of F) is the difference in the distances travelled by the two ends:

$$
x=\int v_{1} d t-\int v_{2} d t
$$

We then can see that $v_{1}=\frac{d x}{d t}+v_{2}$.

$$
\text { Since } x=F / k, \frac{d x}{d t}=\frac{1}{k} \frac{d F}{d t}
$$

Our final set of equations is :

$$
\begin{aligned}
F_{1} & =F_{2} \\
v_{1} & =\frac{1}{k} \frac{d F_{2}}{d t}+v_{2}
\end{aligned}
$$

Now let us look at the circuit of Fig. 6(a).
For this circuit we obviously have $V_{1}=V_{2}$.
We also can see that

$$
I_{1}=C \frac{d V_{2}}{d t}+I_{2}
$$

We get the relationship that $C \nRightarrow 1 / k$.
For the restoring spring shown as Fig. 5(b) the equations are quite different. The light stiff rod is only there to separate the input and output terminals and its two ends move at the same velocity. The spring alters the force relationships, so that

$$
\begin{aligned}
& F_{1}=F_{2}+k x, \text { which gives us } \\
& F_{1}=F_{2}+k \int v_{2} d t \\
& v_{1}= \\
& v_{2} .
\end{aligned}
$$

Consider the circuit of Fig. 6(b). In this circuit the current which flows in at one terminal flows out at the other. I am not sure whether this is obvious, but if you consider a battery connected at the left-hand end you will see that the capacitor will not charge until you short-circuit the right-hand

Fig. 6. Two ways of connecting a capacitor in a circuit.
terminals. There is a difference between the two voltages, which is given by

$$
\begin{aligned}
V_{1} & =V_{2}+\frac{1}{C} \int I_{2} d t \\
I_{1} & =\quad I_{2}
\end{aligned}
$$

Comparing this with the force-velocity equations we see again that

$C \neq 1 / k$

but we see the important difference in the method of connection. It is the first reward of our rather pedantic approach.

It is fairly easy to see that friction, the viscous friction we ate concerned with, can also appear in two ways. On a level road, at constant speed, the engine of a motor car is simply providing the force needed to balance the various friction loads, drag, internal losses, the cooling fan. Bang the accelerator down on an icy road and you are aware that you rely on force transmitted through a frictional coupling. The same is true when the clutch is slipping, either of intent or age. We can draw these two forms of frictional element in the forms of Fig. 7. Fig. 7(a)

Fig. 7. Frictional mechanical elements.
shows a typical frictional loss situation, corresponding to the drag on your car, the loss at a bearing. For a unit of this kind we have the same velocity at both ends, but we must "overcome" the friction. Thus

$$
\begin{aligned}
& F_{1}=F_{2}+\rho v_{2} \\
& v_{1}=v_{2}
\end{aligned}
$$

The equations for this are similar in pattern to the equations we can write down for the electrical circuit of Fig. 8(a):

$$
\begin{aligned}
& V_{1}=V_{2}+R I_{2} \\
& I_{1}=\quad I_{2}
\end{aligned}
$$

We see that $\rho \neq R$.
For the circuit of Fig. 7(b) we have rather different equations. This dash-pot coupling is assumed to be without mass. Any mass which is found in a real dash-pot appears as a separate circuit element, just as the inductance, and for that matter the capacitance, of a real resistor is not included in resistance equations. No mass, no net force. We get the equations:

$$
\begin{aligned}
& F_{1}=F_{2} \\
& v_{1}=F_{2} / \rho+v_{2}
\end{aligned}
$$

The circuit of Fig. 8(b) gives us

$$
V_{1}=V_{2}
$$

$$
I_{1}=V_{2} / R+I_{2}
$$

Again $R \neq \rho$, but the method of connection is different.

Before we can apply this collection of analogues to mechanical systems of the kind shown in Fig. 1 we need to be able to convert to a two-terminal network. At the end of an analysis we finish up by either shortcircuiting or open-circuiting the terminals at the extreme right-hand end. Opencircuiting a mechanical terminal means simply pretending it is not there : shortcircuiting it means clamping it to earth. We can clamp the rod in Fig. 7(a) by allowing the frictional force to become very large, so that F is finite as v goes to zero. This makes R in Fig. 8(a) go off towards infinity, leaving

Fig. 8. Resistance in an electrical circuit.
the left-hand terminals as good as open. A clamped rod appears as an electrical open circuit, with I, v, both zero.

A free mechanical terminal is obtained if we let $\rho \rightarrow 0$ in Fig. 8(b). If the left-hand end can slide freely, it does not matter what we do about F_{2} and v_{2}. We get the same conditions as we get if $R \rightarrow 0$ in Fig. $8(\mathrm{~b})$. V and F must always be zero.

Now we can draw out Fig. 1 again. I have done this in two different ways. In Fig. 9(a) the spring is shown as a restoring spring,

(b)

Fig. 9. The Fig. 1 mechanical circuit redrawn.

Fig. 10. The electrical forms of Fig. 9.
with the right-hand end left free. In Fig. 9(b) it is a spring coupling, connected to a clamp. Building up term by term we get the two circuits of Fig. 10. The actual end result is the same, but it is obtained in two slightly different ways.

At last, however, we can look at Fig. 2. For convenience the electrical equivalent is drawn from left to right, corresponding to reading the mechanical circuit from right to left. We get the result shown in Fig. 11.

Fig. 11. Electrical equivalent of Fig. 2.
Because of this clarification between shunt and series arms the network is very easy to determine. There is, of course, the possibility of introducing a restoring spring somewhere in the middle, to provide us with a capacitance in a series arm. And this raises a rather embarrassing question. Analogues, we said at the beginning, are to give us something mechanical to took at when we cannot picture the flow of electricity in a network. What are we to do if we have a shunt inductance in the electric circuit?

Fig. 12. Shunt inductance.
Questions like this explain why in the elementary books the use of analogues is allowed to fade away quietly. Wireless World authors, however, are not such mugs as to raise questions they cannot answer : at least not without laying a careful smokescreen. We want the mechanical analogue for the circuit of Fig. 12, which satisfies the equations:

$$
\begin{aligned}
& V_{1}=V_{2} \\
& I_{1}=\frac{1}{L} \int V_{2} d t+I_{2} .
\end{aligned}
$$

The second equation of this pair can be differentiated, to give

$$
\frac{d I_{1}}{d t}=\frac{V_{2}}{L}+\frac{d I_{2}}{d t}
$$

We now consider, because I know it leads to the right answer, a bar, of length 21 , mass m, with all the mass concentrated at the centre of gravity, which is also the middle of the rod. This is shown in Fig. 13. If we waggle one end the other end will move. Rather inconveniently the two ends move in opposite directions, so I have drawn \boldsymbol{F}_{2} and v_{2} in the common-sense way rather than the formal way. The moment of inertia about the centre of the rod is zero, and if it
is not to have infinite angular acceleration

$$
F_{1} l-F_{2} l=m l^{2} d^{2} \theta / d t^{2}=0
$$

Thus $\quad F_{1}=F_{2}$.
The net force acting on the rod is,

$$
F_{1}+F_{2},
$$

and this will accelerate the central mass, which is assumed to have velocity v_{0}, giving

$$
\left(F_{1}+F_{2}\right)=m\left(d v_{0} / d t\right)
$$

The rod does not come apart, so that we must have

$$
v_{0}=\left(v_{1}-v_{2}\right) / 2
$$

Hence $F_{1}+F_{2}=2 F_{2}=\frac{1}{2}\left(m \frac{d v_{1}}{d t}-m \frac{d v_{2}}{d t}\right)$
Rearranging this:

$$
\frac{d v_{1}}{d t}=\frac{4}{m} F_{2}+\frac{d v_{2}}{d t}
$$

Compare this with the equation

$$
\frac{d I_{1}}{d t}=\frac{1}{L} V_{2}+\frac{d I_{2}}{d t}
$$

We see that this weighted bar gives us the right shape of equation, with L appearing as $m / 4$. In order to keep things in line we

Fig. 13. A bar with its weight concentrated at the centre of gravity.

Fig. 14. To get the senses lined up we add a lever.
can add a lever, as shown in Fig. 14. This makes no difference to the analysis.
At this stage we have the complete set of elementary text-book equivalents. Sheer idleness makes me omit the proof that a pivoted lever is in fact an ideal transformer, provided that it is infinitely light. The equations are so simple that they are not wortl writing down. We are all ready to take a mechanical system and draw the corresponding circuit. If the mechanical circuit is a rotary motion system we need some minor changes. We use angular velocity, no linear velocity: we use moment of inertia, not mass; torque, not force. It is much of a muchness, though. There comes, however, one difficult moment. Suppose that the mechanical circuit is not a thing by

The two sets of equivalents.
itself, but is being driven by, or is driving an electric circuit. At one end we have a trans-ducer-it may be a loudspeaker coilwhich is fed from an electrical network. Two networks in tandem will be fine, we think, until we notice that for the transducer we have the equation

$$
F=\mu I
$$

and working the other way round

$$
V=\mu^{\prime} v
$$

The ideal transducer will have $V I=F v$, so that $\mu=\mu^{\prime}$ and

$$
\begin{aligned}
F & =\mu I \\
v & =\frac{1}{\mu} V,
\end{aligned}
$$

the equations of an ideal transformer, if only we could take I as equivalent to F, and V equivalent to v. We can, and somewhere at the beginning of this article I said we had to choose in a rather arbitrary way whether to take $F \rightarrow V$ or $F \rightarrow I$. If only I had not been so stupid, and had made the other choice. Then, I hasten to explain, I would have considered at this stage the piezo-electric transducer, with $F \propto V$. More tears and gnashing of teeth.

It is clear that we need to have two sets of equivalents available if the mechanical system is to be interconnected with an electrical one. If it is not connected to an electrical circuit there is nothing to choose between the two sets, in spite of some writers who have claimed that one or the other is right. A text-book writer can find some systems which are a little easier his way, just as it is sometimes easier to work with conductance instead of resistance : he
leaves out the systems which are just a little harder his way.

The other set of equivalents is derived in exactly the same way as before, except that now we compare the two sets of equations:

$$
\begin{aligned}
& V_{1}=A V_{2}+B I_{2} \\
& I_{1}=C V_{2}+D I_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& v_{1}=\alpha v_{2}+\beta F_{2} \\
& F_{1}=\gamma v_{2}+\delta F_{2}
\end{aligned}
$$

When we find a set in which the two patterns:

$$
\begin{array}{ll}
A & B \\
C & D
\end{array} \text { and } \begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}
$$

look alike except that one contains m or μ and the other C or L, we can trace the equivalence. We do not need any more figures: we have all the network elements we need. For Fig. 3, for example

$$
\begin{aligned}
& v_{1}=v_{2} \\
& F_{1}=m d v_{2} / d t+F_{2}
\end{aligned}
$$

and for Fig. 6(a)

$$
\begin{aligned}
& V_{1}=V_{2} \\
& I_{1}=C d V / d t+I_{2}
\end{aligned}
$$

In this set of equivalents, then, the mass is no longer the series inductance : it is a shunt capacitance.
The restoring spring of Fig. 7(b) gives us

$$
\begin{aligned}
v_{1} & =v_{2} \\
F_{1} & =k \int v_{2} d t+F_{2}, \text { or } \\
\frac{d F_{1}}{d t} & =k v_{2}+\frac{d F_{2}}{d t}
\end{aligned}
$$

This is the equation, in equivalent terms, for the shunt inductance of Fig. 12

$$
\begin{aligned}
V_{1} & =V_{2} \\
\frac{d I_{1}}{d t} & =\frac{V}{L}+\frac{d I_{2}}{d t}
\end{aligned}
$$

The spring has become a shunt inductance, and the relationship is that $L \propto 1 / k$. For the spring of Fig. 5 (a)

$$
\begin{aligned}
v_{1} & =v_{2}+\frac{1}{k} \frac{d F_{2}}{d t} \\
F_{1} & =F_{2}
\end{aligned}
$$

This we compare with

$$
\begin{aligned}
V_{1} & =V_{2}+L d I_{2} / d t \\
I_{1} & =\quad I_{2}
\end{aligned}
$$

which are the equations for the series inductance in Fig. 4. Again L and $1 / k$ appear as equivalents. We are left with Fig. 6(b) and Fig. 14. I propose to take it for granted that C turns into $m / 4$.
Some readers may have recognized that this treatment has led us to a set of dual circuits. Duality is a topic which is always of academic importance but which has ups and downs in its value to the practical man. When the triode valve was the normal active element in circuits we did our sums with amplification factor and anode impedance. The valve became a Thevenin generator. When the pentode became the common device we threw out the anode impedance as being too high to worry
about, and used mutual conductance. This brought us to Norton's dual form of Thevenin's Theorem. It was not always the right thing to do : the "starved amplifier" turned out to be working in a region where the amplification factor and the impedance mattered. Two valves with the same mutual conductance could reach that figure by two different paths, and would be quite different when used in starved circuits, even though the quoted mutual conductance characteristics were the same.

The point contact transistor brought duality in in a big way. Twenty years ago we were all hard at work converting our valve circuits into complete duals for use with transistors. The junction transistor turned up to put a stop to that, but brought us back to the high impedance current generator. Again there have been strongly partisan descriptions of one or other of the electric circuit duals, node or mesh analysis, for example, but on balance they always seem to boil down to a statement that "my system is simpler for the kind of circuit I work with". The alternative is "I'm used to doing it this way". Neither of these is a guarantee of absolute truth.

Returning to mechanical equivalents, an interesting form is the simple bar. If you hit one end of a steel bar you get a clear belllike tone, like the voice of a Noel Coward heroine. If you consider the usual infinitesimal sections of tiny masses coupled by tiny springs you see the electrical equivalent is a transmission line, and you can find its characteristic impedance and propagation constant. There is a whole mass of material on transmission line filters which can thus be translated directly into mechanical terms. Typical structures consist of alternating sections of different characteristic impedances, which means different rod diameters. It is possible, and I am not sure of the actual application position, to make a complete multi-section i.f. filter on the lathe.

One of the most exciting developments of the mechanical analogue studies arose from the problems of the transducer and the choice of dual. A magnetic type of transducer produces a force proportional to current and in its ideal form gives us:

$$
\begin{aligned}
F & =\mu I \\
v & =1 / \mu V
\end{aligned}
$$

These equations will need to be rearranged in a moment. An electrostatic transducer, and this includes the piezoelectric devices, gives us

$$
\begin{aligned}
& F=\mu_{1} V \\
& v=\frac{1}{\mu_{1}} I
\end{aligned}
$$

Let us rearrange the first set of equations:

$$
\begin{aligned}
V_{1} & =\mu v_{2} \\
I_{1} & =1 / \mu F_{2}
\end{aligned}
$$

and assume that F_{2} and v_{2} are applied directly to the electrostatic transducer. Then we substitute for F and v to get

$$
\begin{aligned}
& V_{1}=\frac{\mu}{\mu_{1}} J_{2} \\
& I_{1}=\frac{\mu_{1}}{\mu} V_{2} .
\end{aligned}
$$

The transducers are assumed to be ideal. Real transducers have mass, and resistance, and are not infinitely stiff, so we get inductance and resistance and capacitance in the network. We are accustomed to the idea of sorting out the properties of the ideal element, however, and here is a system which, in ideal form in a black box, has electrical properties that, one might say, never were on land or sea.

On sea, especially, there was, in the long distant days when this was first noted, a mechanical system with just the equivalent properties. If a torque is applied to a gyroscope the axis moves with an angular velocity proportional to the torque. You need to support the whole thing in such a way that you can take off two shafts, but the equations are :

$$
\begin{aligned}
& T_{1}=g \dot{\theta}_{2} \\
& \dot{\theta}_{1}=\frac{1}{g} T_{2}
\end{aligned}
$$

in which T is the torque for the two shafts and

$$
\dot{\theta}=d \theta / d t, \text { the angular velocity. }
$$

The black box with the crystal pickup driven by a moving-coil loudspeaker inside is, or would be if it were perfect, the electrical equivalent of the gyroscope in a mechanical system. This was all pulled into shape by Tellegen, who studied the implications of this system as a circuit element. He gave it a name, too, calling it a gyrator. It looks simple, but it was a tremendous step to announce that after so many years of the theory of passive networks there was an additional theoretical element. Later, either Tellegen or Avrell showed that with L, C, R, the transformer and the gyrator, the set was complete. There is not another one waiting to be found, named, studied.

One feature of the gyrator is that it throws the Reciprocity Theorem out of the window, though not out of the books. With no gyrators in a circuit you know that if a signal will go through it from left to right it will go equally well from right to left. This only applies, of course, to linear passive networks. With gyrators in the circuit this is no longer true.

An immediate result was to clean up a rather untidy situation in a theoretical area where lumped circuit theoreticians had rather come to grief. If you transmit a signal by way of the ionosphere you find that in some conditions the signal will reach a distant station, but that their signal at the same frequency will not reach you. Working away with Maxwell's equations and the equations for free electrons in a magnetic field this is perfectly resonable. To a circuit man, with two pairs of aerial terminals and some passive system in between, it seemed agin nature. The clue lies in those electrons, spinning in small circles. The gyro-coupling in the ionosphere provides the essential circuit element for making the transmission path non-reciprocal.

Here, in turn, is the key to the practical passive gyrator. We can put a lump of condensed ionosphere into a circuit. We do not, of course, bring down real ionosphere with specially built rockets. We use ferrites: the spin associated with the magnetic characteristic of a ferrite provides us with the
gyro-coupling we need to produce gyrator behaviour in a waveguide at microwave frequencies.

It may appear that Roman aqueducts have nothing to do with microwave equipment but yet, as we have seen in this article, there is a continuous line of reasoning from the water flowing in pipes which we are given as an analogue of a direct-current circuit through to the gyrator used to sort out whether the signals are coming or going.

Pneumatic and hydraulic systems can equally well be treated, at a low level, in terms of electrical equivalents, and vice versa. At a low level, only, because we find that these are not really linear in normal working situations. A diode pump is not the same as a bicycle pump, because the rise in air temperature cannot be described in terms of simple circuit resistances. You can still get a good idea of what is happening, for example why you have a water hammer in your home plumbing, but it is not wise to rely too closely on the calculated results. The solution is qualitative, not quantitative. For engineers who want to understand designs in another discipline analogues are fine: a heating problem becomes just a matter of voltages (temperatures) and currents (heat) in a network of capacitances (thermal storage) and resistances (heat loss). If you do want to design a silencer for your car you may prefer to think of it as a lowpass filter-with some m-sections if you like -before you take up the tin-snips.

Remember, always, that though analogues are useful, they are only models, and it is quite a step from piloting your radiocontrolled boat on the Round Pond to commanding the Q.E.2. You get worse pay in Kensington Gardens.

May Meetings

LONDON

11th. I.E.E.-"Electronic measurement in the automobile industry" by M. H. Westbrook at 17.30 at Savoy PI., W.C.2.

12th. Soc. Relay Eng.-"Problems associated with transmission, reception and distribution at u.h.f." at 14.15 at the I.E.E., Savoy PI., W.C.2.

13th. I.E.E.-Colour recording media" by David F. Attenborough and J. Redmond at 17.30 at Savoy PI., W.C.2.

13th. S.E.R.T.-"Closed circuit educational television" by E. Wykes at 19.00 at the Educational Television Centre, Tennyson St., S.W. 8 .

14th. I.E.R.E.-"Optimum electronic module size for a cost-effective repair policy" by T. G. Sanders and D. J. Taylor at 18.00 at 9 Bedford Sq., W.C.I.

18th. I.E.E.-"Avalanche diodes-normal and subnormal" at I, 1.00 at Savoy Pl., W.C.2.
27th. I.E.E/T.E.R.E.-Discussion on "Electronic circuits for medical instrumentation" at 14.00 at Savoy Pl., W.C.2.

BIRMINGHAM

13th. R.T.S.-"The introduction of colour to ITV programming" by Stuart Sansom at 19.00 at ATV Centre, Bridge St., 1 .

BRIGHTON

12th. I.E.E. Grads.-"Thick film microelectronics" by P. G. Barnwell at 18.30 at Brighton College of Technology, Moulescoomb.

Thelight
 heavyweight champion wins on points

Solartron's light heavyweight champion,
the CD1642, is a natural-born winner Look at its advantages.
Fully transistorised portability, running off every power source you use, with an optional rechargeable battery attachment too And you lose nothing in full-size lab. 'scope performance. It has $10 \mathrm{mV} / \mathrm{cm}$ sensitivity at 15 MHz , triggering to 25 MHz , dual
trace, D.C. -15 MHz , brilliantly crisp displays and exceptional focus right to the edges. And to top it off, we AGREE test every machine for a week in the toughest conditions to assure top performance.
So stop worrying about losing performance in the field. The CD1642 gets a load off your mind as well as your arm.
Post the magazine's reply-paid card and we'll send you our data sheet of full details.

SGLABMRON

 Schlumberger

[^14]
PLUG-IN PLANETS

EASY FITTING

The range of Planet timers has been extended by the addition of a plug-in facility Any Mk II planet with locking handle can now be fitted into a housing mounted through a single hole to a panel. Alternatively a kit to convert to surface mounting is available.

FLEXIBILITY

Without disconnecting wiring and without using tools (apart from loosening optional handle locking screw) planets can be interchanged for ease of servicing and alteration of time ranges.

WIDE RANGE

The complete range of Planet timers are avallable in both plug-in and wired units.

DIGITAL PLANETEX

A solid state digítally set timer for high repeat accuracy. Range from 9.99 to 999 seconds. Lamp indication of timed out and timing in progress conditions.

ELREMCO

PLANET

The original Planet timer for interval, delay or compound timing. Available with or without timing progress pointer. Initiation of timing cycle is by energisation of internal solenoid.

PLANETEX

A solid state automatic rese timer with ranges from 50 mS to 30 minutes. Available as either a delay or interval timer and with choice of electro-mechanical or solid state output relay.

PLANET/MV

Available in the same ranges and operating modes as the Planet, the MV model is initiated by a manual push button on the front bezel. The timing cycle can be arrested and reset at any time by this button.

Further details and comprehensive literature available on request from:
ELECTRICAL REMOTE CONTROL COMPANY LIMITED
P.O. Box 10, Bush Fair, Harlow, Essex
Telephone: Harlow 24285 Telex: 81284

Active Filters

10. Uses of the parallel-T network

by F. E. J. Girling* and E. F. Good*

The balanced parallel-T network offers convenience and versatility, and makes less demand on amplifier gain than the two-lag loop and related circuits. It is, however, sensitive to errors that cause unbalance in the two tees, increasingly so as the Q factor is raised. It is most useful, therefore, in circuits of moderate Q in which economy in amplifier gain and in number of amplifiers is desired.
In principle the Q factor of a parallel-tee network can be increased in direct proportion to the available loop gain, Part 4, equn. (32). This is apparently a much more powerful law than the square-root relationship that applies to the two-lag loop and related circuits. The potential performance can, however, be exploited only to a degree depending on how closely equal the time constants of the two tees can be held, since the effects of any inequality increase as the required Q factor increases. Nevertheless, parallel-T circuits may be considered a practical possibility for moderate Q factors (say from 2 to 10), and may on occasion be preferred because of the economy in amplifier gain.

The particular arrangement of active parallel-T filter to which most attention is given in this article (Fig. 10(b)) is one which the present authors have found useful from time to time, and one which is easily adapted to give any 2 nd-order transfer function. It can therefore be used to build higher-order filters by the method of synthesis by factors.

The parallel-T network

The basic characteristics of the balanced parallel-T network were discussed in Part 3. Its special feature is that at a certain frequency it gives zero transmission; and the necessary condition for the existence of the zero is that the short-circuited-output time constants of the two tees should be equal. Thus in Fig. 1(a) C_{2} multiplied by the resistance of R^{\prime} and $R^{\prime \prime}$ in parallel must equal R_{2} multiplied by the sum of C^{\prime} and $C^{\prime \prime}$; i.e. for a zero

$$
\begin{equation*}
T_{2}=T_{2}{ }^{\prime} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{2}=\frac{C_{2} R^{\prime} R^{\prime \prime}}{R^{\prime}+R^{\prime \prime}} \tag{2}
\end{equation*}
$$

and $\quad T_{2}{ }^{\prime}=\left(C^{\prime}+C^{\prime \prime}\right) R_{2}$.
(See the analysis given next month.)

[^15]

Fig. l. (a) Parallel-T network. (b) LCR network giving symmetrical notch response.

If now T_{1} is the time constant of the mesh formed by the upper four components when the lower two are removed, i.e.

$$
\begin{equation*}
T_{1}=\frac{C^{\prime} C^{\prime \prime}\left(R^{\prime}+R^{\prime \prime}\right)}{C^{\prime}+C^{\prime \prime}} \tag{4}
\end{equation*}
$$

the transfer function for the input V_{1} may be written

$$
\begin{equation*}
\frac{V_{0}}{V_{1}}=\frac{1+p^{2} T^{2}}{1+p T / q_{0}+p^{2} T^{2}} \tag{5}
\end{equation*}
$$

and for V_{2} (see Fig. 21, Part 3)

$$
\begin{equation*}
\frac{V_{0}}{V_{2}}=1-\frac{V_{0}}{V_{1}}=\frac{p T / q_{0}}{1+p T / q_{0}+p^{2} T^{2}} \tag{6}
\end{equation*}
$$

where $T^{2}=T_{1} T_{2}$. These transfer functions are of the same form as those for the $L C R$ network of Fig. 1(b), though, of course, for the $C R$ network $q_{0} \leqslant \frac{1}{2}$; but there the similarity between the two networks ends,

(a)

(c)

Fig. 2. (a) Balanced parallel-T network with the most commonly used set of relative values. (b) Shorthand representation of the same. (c) and (d) balanced parallel-T network with split inputs.
since there is no direct correspondence between the currents or the internal voltages.
As shown in Part 3, $q_{0} \rightarrow \frac{1}{2}$ only when $T_{1}=T_{2}$ and both $R^{\prime \prime} / R^{\prime}$ and $C^{\prime} / C^{\prime \prime} \rightarrow 0$; and it is usual to accept a lower value in exchange for the convenience of using sets ofcomponents with more equal values. Thus in most of what follows $R^{\prime}=R^{\prime \prime}$ and $C^{\prime}=C^{\prime \prime}$. The maximum value of q_{0}, obtained when $T_{1}=T_{2}$, is then

$$
\begin{equation*}
q_{0}=\frac{1}{4} . \tag{7}
\end{equation*}
$$

This set of relative component values is shown in Fig. 2(a) and will be represented when convenient in the shorthand form shown in Fig。2(b)
A practical problem in using the paralleltee network is finding from the standard ranges of values sets of components which give balance (i.e. a null) at, within allowable tolerance, the required frequency; and some suggestions made at the end of the article (next month) may be of help.

The parallel-T network with gain and feedback

As shown in Part 4 the Q factor of an (accurately balanced) parallel-tee network is magnified according to the relationship

$$
\begin{equation*}
q=(A+1) q_{0} \simeq A q_{0} \tag{8}
\end{equation*}
$$

This result is most easily obtained by considering a system with 100% feedback, Fig. 3; in which the input voltage is applied

Fig. 3. Feedback loop containing parallel-T network.
in series with the output voltage. This gives

$$
\begin{align*}
& V_{1}=V_{\text {out }}+V_{\text {in }} \tag{9}\\
& V_{0}=-V_{\text {out }} / A, \tag{10}
\end{align*}
$$

whence by substitution from equn. (5)

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{A}{A+1} \cdot \frac{1+p^{2} T^{2}}{1+p T / q+p^{2} T^{2}} \tag{11}
\end{equation*}
$$

with q as given by equn. (8).

Theory of circuits with ideal amplifiers

Practical circuits must be arranged so that the input voltage can be applied with one side grounded, and in addition it should be possible to enter the circuit at different places so that a variety of 2 nd-order responses can be obtained, $1-\mathrm{p}, \mathrm{b}-\mathrm{p}$ (tunedcircuit), etc. To obtain accurate values of Q factor(and to ensure low output impedance) the effective value of A should be stabilised by feedback; and, as usual, the easiest and most effective approach to all these problems is by considering idealised arrange-
ments using amplifiers which are assumed to have infinite internal gain.

A convenient starting point is the circuit arrangement shown in Fig. 4(a), in which the rejection characteristic of the parallel-T

Fig. 4. (a) virtual-earth arrangement of parallel-T feedback circuit with resistance ratio arms. (b) The same with CR ratio arms with time constants matched to the tees.
network is employed in a feedback path to give the arrangement an approximate tuned-circuit response. At the rejection frequency of the network there is no feedback via this path, and (with $A=\infty$) $V_{\text {out }} / V_{\text {in }}=-R_{f b} / R_{\text {in }}$. At high frequencies the feedback network approximates to a single capacitor of value C, which in conjunction with $R_{\text {in }}$ causes the amplitude response $|G(\omega)|$ to fall indefinitely as frequency increases. At low frequencies, however, the combined feedback network becomes equivalent to a single resistor (R in parallel with $R_{f b}$), and so $|G(\omega)|$ falls to a constant value. Less obviously, the maximum in the amplitude response is not at the null of the parallel-tee network (Ref. 1).
A simple modification to obtain exact tuned-circuit response was invented by S. W. Noble and F. C. Williams at the Telecommunications Research Establishment during the last war (Ref. 2). It still does not seem to be widely known. The purely resistive branches, $R_{f b}$ and $R_{i n}$, are replaced by $C R$ branches with time constants equal o the time constant ($T_{2}=T_{2}{ }^{\prime}$) of the tees, i.e. the time constant that appears in the denominators of the expressions for the short-circuit output currents, equns. (42) and (44). This is shown in Fig. 4(b). The magnitudes of the impedances of these branches can (in principle) have any values as long as the $C R$ products equal T_{2} (which $=T$ when $T_{1}=T_{2}=T=1 / \omega_{0}$, as for the circuit shown). By inspection:

$$
\begin{align*}
& I_{1}=\frac{V_{\text {out }}}{R} \times \frac{1}{1+p T} \tag{12}\\
& I_{2}=\frac{V_{\text {out }}}{q R} \times \frac{p T}{1+p T} \tag{13}\\
& I_{3}=\frac{V_{\text {out }}}{R} \times \frac{p^{2} T^{2}}{1+p T} \tag{14}\\
& I_{\text {in }}=\frac{V_{\text {in }}}{n R} \times \frac{p T}{1+p T} \tag{15}
\end{align*}
$$

and hence

$$
\begin{align*}
& V_{\text {out }}\left(1+p T / q+p^{2} T^{2}\right)=-V_{\text {in }} p T / n(1 \tag{16}\\
& \text { i.e. } \quad \frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{1}{n} \cdot \frac{p T}{1+p T / q+p^{2} T^{2}} \tag{17}
\end{align*}
$$

So true tuned-circuit response is obtained with Q factor $=q$. If $n=1$ the gain at resonance is q; if $n=q$ the whole curve is depressed so that at the peak $V_{\text {out }}=V_{\text {in }}$.

Putting $\mathrm{p}=j \omega$ turns the numerators of the transfer functions of equns. (12) to (14) into $1, j \omega T,(j \omega T)^{2}$. Hence, since the denominators are alike, the feedback currents, I_{1}, I_{2}, and I_{3}, have successive constant phase differences of 90°. At the null frequency I_{1} and I_{3} are equal in magnitude as well as opposite in phase. Consequently, since the sum of the currents converging on the virtual earth must be zero, $\dagger I_{\text {in }}$ and I_{2} must also be equal and opposite. It follows therefore that at the null frequency of the parallel-tee network, which is also the peak or resonant frequency, the vectors representing the four currents form a figure with four right angles, Fig. 5, and for the relative

Fig. 5. Vector diagram for Fig. 4(b) showing relative phases of voltages and currents at ω_{0}, the mull frequency of the parallel- T network.
component values of Figs. 2(a) and 4(b) the currents are at 45° and 135° to $V_{\text {in }}$ and $V_{\text {our }}$.

For the arrangement without the additional Cs. Fig. 4(a), $I_{\text {in }}$ and $I_{\text {out }}$ are in phase with $V_{i n}$ and $V_{\text {our }}$, and so not in quadrature with I_{1} and I_{3}. The independence of tuning and damping is then lost, and the behaviour of the circuit is more complex.
Any arrangement which gives the same How of currents to the virtual earth gives the same response. Hence a considerable number of variations of the circuit are possible, and a selection are shown in Fig. 6. At (a) the number of capacitances is reduced by amalgamating those of the input and damping arms. At (b) one of the tees is made to serve also as the input arm (either or both tees may be so used); and at (c) the damping arm is eliminated by feeding to the bottom of one of the tees a fraction of $V_{\text {out }}$. It is necessary, of course, that in all variations the effective $T \mathrm{~s}$ (time constants) of the current paths are unaltered. This means, for example, since $V_{\text {in }}$ represents an effectively zero-impedance source; that sometimes when $V_{\text {in }}$ is introduced into a branch carrying relatively heavy current a buffer amplifier of low output impedance is needed.

Effect on \mathbf{Q} factor of unbalance in the tees

Suppose the capacitance which ideally has

[^16]

(b)

Fig. 6. Some alternative methods of applying damping.
the value $4 C$ (Fig. 4) is slightly increased. Then at the frequency ω_{0} which was the frequency of balance the magnitude of I_{1} is slightly reduced and the phase angle it makes with $V_{\text {out }}$ is slightly increased. At a certain slightly lower frequency the phase angle of I_{1} will move back by an amount equal to about half the increase just mentioned and the phase angle of I_{3} will move forward to give a figure as shown in Fig. 7. I_{1} and I_{3} are again equal in magnitude, and have a resultant OP which is in phase with $I_{i n}$ (Fig. 5).

Fig. 7. Phase-angle relationships when $T_{2}>T_{2}{ }^{\prime}$.

If at the frequency $\omega_{c}=1 / T$ the time constant of a simple-lag network is increased by a small fraction x, the increase in phase angle is $x / 2$ radians. Hence in Fig. $7 \Delta \phi=x / 4$ radians and the length of $\mathrm{OP}\left(\right.$ if $I_{1}=I_{2}$ lengths $=1$) is $x / 2$.
Since OP is in phase with $I_{\text {in }}$, for constant I_{2} (and hence for constant $V_{\text {out }}$) a smaller $I_{\text {in }}$ is required. Hence at this frequency, ω_{0} approx., the gain of the system is increased. At frequencies well removed from ω_{0}, where there was already a considerable unbalance between I_{1} and I_{3}, the unbalance is not significantly altered. Hence it is only near the peak of the response that the gain of the system is increased, and the increase can be expressed as an increase in Q factor. Therefore, since with ideal values $\left|I_{i n}\right| /\left|I_{1}\right|=1 / q_{i}$, the increase in the time constant of the lowpass tee has effectively increased the Q
factor according to the equation

$$
\begin{align*}
\frac{1}{q} & =\frac{1}{q_{i}}-\frac{x}{2} . \tag{18}\\
& =\frac{1}{q_{i}}\left(1-\frac{q_{i} x}{2}\right) . \tag{19}
\end{align*}
$$

This shows that when $q_{i}>2$ the fractional change in Q factor is $>x$, and that if $x \rightarrow 2 / q_{i}, q \rightarrow \infty$.
Similarly if the value of the resistance of the high-pass tee (nominally $R / 4$) is reduced by a fraction x, the same change in q is found, though the frequency of the peak moves upwards. And in the same way the effect of changes in the horizontal elements of the tees can be estimated. In general if $T_{2}>T_{2}^{\prime}$ [see equns. (2) and (3)] q is increased : if $T_{2}<T_{2}{ }^{\prime}, \varphi$ is reduced. The change in the frequency of the peak depends both on the change in short-circuit time constant and on whether T_{1} [equn. (4)] is changed.

A fractional change in only one of the horizontal elements has only half the effect on T_{2} or $T_{2}{ }^{\prime}$ as the same fractional change in the vertical elements (when the two horizontal elements are approximately equal), and therefore the q sensitivity to changes in only one horizontal element is also only half as great.

Series feedback

Consider the circuit arrangement shown in Fig. 8(a). For the input $V_{\text {in }}{ }^{\prime}$ applied between terminals 1 and 2 , this is the same as that already considered except that the damping arm is missing (the amplifier is shown as a

(b)

Fig. 8. (a) Series-feedback arrangement of parallel-T feedback circuit; (b) the same with changed earth point.
valve, as in Part 6, in order to make clear graphically the steps which follow).* Consequently if $A=\infty$ the response shows infinite q and infinite gain at the tuned frequency, i.e.

$$
\begin{equation*}
G(p)=\frac{V_{\text {out }}}{V_{\text {in }}{ }^{\prime}}=-\frac{1}{n} \cdot \frac{p T}{1+p^{2} T^{2}} \tag{20}
\end{equation*}
$$

[^17]To add 100% feedback we must include the whole of the output voltage in series with the input, and this is done by applying the input, $V_{i n}$, between terminals 1 and 3 . The gain found in equn. (20) is now the forward gain μ, and as $\beta=1$, Black's formula reduces to $G=1 /(1-1 / \mu)$, and the gain with the loop closed becomes

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{p T}{n\left(1+\frac{1}{n} p T+p^{2} T^{2}\right)} \tag{21}
\end{equation*}
$$

Thus the series feedback connection has produced a response with $q=n$, a result which might have been expected since the input branch is now in a feedback path and takes the place of the damping branch of the previous circuit arrangement.

Now that the anode (node 3) is common to input and output it is convenient to have this point earthed (as indicated by the arrowhead), after breaking the original earth connection at \times. Fig. 8(b) is the same circuit redrawn with the earth line conventionally at the bottom, and shows that the valve is now connected as a cathode follower. It follows (or see Part 6) that an amplifier with gain $-A$ in Fig 8(a) converts to a cathode follower with gain $K=$ $A /(A+1)$ in Fig. 8(b), and that $K \rightarrow 1$ only as $A \rightarrow \infty$. It is important to remember this when considering the effect of finite gain. Because the output terminals have been inverted, the minus sign is removed from equn. (21) for Fig. 8(b).

It does not require much practice to be able to make the step from one of these types of circuit to the other without drawing in a representative three-terminal amplifier as has been done above. For example, with the parallel-tee in the forward path, Fig. 9(a), and with $A \rightarrow \infty$,

$$
\begin{equation*}
\mu=-\frac{n\left(1+p^{2} T^{2}\right)}{p T} \tag{22}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{1+p^{2} T^{2}}{1+\frac{1}{n} p T+p^{2} T^{2}} \tag{23}
\end{equation*}
$$

which is symmetrical notch response with

Fig. 9. Series-feedback circuits for symmetrical notch response.
$q=n$. And the corresponding circuit, arranged in the "cathode-follower" configuration with node 3 earthed, is readily redrawn as in Fig. 9(b).

The effect of finite gain

Looking again at Fig. 9(a), it is clear that removing the damping arm, by breaking the circuit at \times, will give $q=\infty$ when $A=\infty$. But now the circuit is identical to that shown in Fig. 3, so with A finite q will be as given by equn. (8). This value of q may be identified with a residual value q_{r} (the value obtained when all intentional damping is removed and the Q factor is limited only by the value of A). Thus we may write

$$
\begin{equation*}
q_{r}=(A+1) q_{0} \simeq A q_{0} \tag{24}
\end{equation*}
$$

From the rule that, since losses add, q s add as their reciprocals, it follows that q with A finite will be given by

$$
\begin{equation*}
\frac{1}{q}=\frac{1}{n}+\frac{1}{q_{r}} \simeq \frac{1}{n}+\frac{1}{A q_{0}} \tag{25}
\end{equation*}
$$

that is to say: the actual loss factor is the sum of the ideal loss factor (the loss factor calculated on the assumption of infińite gain) and the residual loss factor,

$$
\begin{equation*}
\frac{1}{q}=\frac{1}{q_{t}}+\frac{1}{A q_{0}} \tag{26}
\end{equation*}
$$

When the parallel-tee network has the usual set of values (Fig. 2) $q_{0}=\frac{1}{4}$ and hence

$$
\begin{equation*}
\frac{1}{q}=\frac{1}{q_{i}}+\frac{4}{A} . \tag{27}
\end{equation*}
$$

This result should be compared with the comparable result for the ordinary Sallen-and-Key circuit [Part 6, equn. (8), with $b=\frac{1}{2}$],

$$
\begin{equation*}
\frac{1}{q}=\frac{1}{q_{i}}+\frac{2 q_{i}}{A} . \tag{28}
\end{equation*}
$$

Only when $q_{i}>2$ does the parallel-tee filter show an advantage in performance, although there may be other reasons for choosing it. However, with increasing q_{i} the advantage grows rapidly. The residual loss factor $4 / \mathrm{A}$ in equn. (27) may, indeed, be compared with the residual loss factor $2 / A$ for the twointegrator loop-but only so far as the accuracy of balance of the parallel-tee network allows.

In the virtual-earth or shunt-feedback arrangement of the circuit the presence of both input and feedback arms causes some loss of effective internal gain. This does not show in the ideal design equations as they are based on $A=\infty$. For Fig. 4(b) with the amplifier gain set at $-A$, and writing q_{i} instead of q,

$$
\begin{align*}
& \frac{V_{o u t}}{V_{i n}}=-\frac{A}{n(A+1)} \times \\
& \frac{p T}{1+\left\{\frac{1}{A+1}\left(4+\frac{1}{n}\right)+\frac{1}{q_{i}}\right\} p T+p^{2} T^{2}} \tag{29}
\end{align*}
$$

which shows that

$$
\begin{equation*}
\frac{1}{q} \simeq \frac{1}{q_{i}}+\frac{4}{A}\left(1+\frac{1}{4 n}\right) \tag{30}
\end{equation*}
$$

Equn. (29) also confirms several results already derived : finite A leaves the response
of the correct form ; the resonant frequency is unaltered; and for $n \gg 1, q_{\max }=A / 4$ approx.

"Universal" 2nd-order filter

With the above particular examples in mind, it is not difficult to take the next step to the general situation shown in Fig. 10(a),
(a)

Fig 10. Circuit of "universal" 2nd-order filter: (a) with amplifier in high-gain, signreversing mode; (b) with amplifier in voltage-follower mode.
in which a separate series feedback connection is made for each of the three branches. Assuming $A \rightarrow \infty$, the currents I_{1}, I_{2} and I_{3} are now given by

$$
\begin{align*}
& I_{1}=\frac{\left(V_{\text {out }}+V_{1}\right)}{R} \times \frac{1}{1+p T} \tag{31}\\
& I_{2}=\frac{\left(V_{\text {out }}+V_{2}\right)}{q R} \times \frac{p T}{1+p T} \tag{32}\\
& I_{3}=\frac{\left(V_{\text {out }}+V_{3}\right)}{R} \times \frac{p^{2} T^{2}}{1+p T} \tag{33}
\end{align*}
$$

and since $I_{1}+I_{2}+I_{3}=0$

$$
\begin{equation*}
V_{\text {out }}=-\frac{V_{1}+\frac{V_{2} p T}{q}+V_{3} p^{2} T^{2}}{1+\frac{p T}{q}+p^{2} T^{2}} \tag{34}
\end{equation*}
$$

Moving the earth point in the now familiar way leads to the practical arrangement Fig. 10(b), in which each of the three generators has one side earthed (and for which, because the other output terminal is now earthed, the minus sign is removed from equn. (34)).

The two examples already considered are covered by making $V_{2}=V_{\text {in }}, V_{1}=V_{3}=0$ for tuned circuit response, and $V_{1}=V_{3}=$ $V_{\mathrm{in}}, V_{2}=0$ for the symmetrical notch. [Note : putting a particular generator voltage $=0$ is equivalent to replacing it by a short circuit.]

Unsymmetrical notch response

$V_{1}=V_{\text {in }}, V_{2}=0, V_{3}=a V_{\text {bn }}(a<1)$, Fig. 11(a), gives the low-pass unsymmetrical notch. Making V_{1} a fraction of $V_{\text {in }}\left(V_{1}=\right.$
$a V_{\text {in }}, V_{3}=V_{\text {in }}$) gives the corresponding high-pass response. In this case it is possible, as shown in Fig. 11(b), to obtain the required fraction of the input voltage by using a
(a)

(b)

Fig. 11. Círcuits for unsymmetrical notch response: (a) low-pass type; (b) high-pass type. The asterisk marks the amplifier whose high internal gain and high input impedance is important to obtaining the desired Q factor.
simple potential divider. Apart from the potentiality for higher Q factors compared with the circuits offered in Part 6, there is also the useful feature that q may be adjusted independently of T. Applications to higherorder filters are similar to those suggested in Part 9.

Simple low-pass and high-pass

$V_{1}=V_{\text {in }}, V_{2}=V_{3}=0$, Fig. 12(a) gives simple (i.e. all-pole) low-pass response, and $V_{3}=V_{\text {in }}, V_{1}=V_{2}=0$, Fig. 12(b), gives

Fig. 12. Circuits for simple low-pass and high-pass response.

(a)

Fig. 13. Circuits for all-pass response(b) shows possible economical alternative to (a).
high-pass. These circuits have a somewhat strange appearance in this simple role. This is because we know that two capacitances are in principle sufficient for simple 2ndorder response. It is worth remembering, however, that they retain the same potential for higher Q factor as the other circuits (for unexcited the circuit is unchanged and hence the natural motion, i,e. the decay of transients, is unaltered), and also that it is not necessary to increase the size of any C when q is increased. An obvious application is for the synthesis of the highest- q quadratic factor in a high order Butterworth series (see Part 9). There is also some attraction in a Butterworth filter composed entirely from these circuits, since the parallel-T networks are the same for every factor and only the values of the components in the damping branches differ (and even these can be alike if potential dividers are used, Fig. 14). There is no advantage in performance for the lower q factors however.

All-pass

If $-V_{\text {in }}$ is made available (by using an inverting amplifier) it is possible to set $V_{1}=V_{3}=V_{\text {in }}$, and $V_{2}=-V_{\text {in }}$, Fig. 13. This gives the all-pass transfer ratio

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{1-p T / q+p^{2} T^{2}}{1+p T / q+p^{2} T^{2}}
$$

which has a flat amplitude vs. frequency response with phase going from 0° to 360° as ω goes from 0 to ∞.

Variable q

If $V_{2}=(1-x) V_{\text {out }}$, controlled by a potentiometer, Fig. 14, the q of any low-pass, high-pass or notch response can be con-

Fig. 14. Variable damping with a potentiometer.
tinuously varied. With $A=\infty$ (i.e. $K=1$ exactly), $q=q_{1} / x$, where q_{1} is the value of q set in with $x=1$. With finite $A, x=0$ gives $q \simeq q_{r}$.

References

1. "Network-Tuned Amplifiers with Variable Bandwidth", by R. J. Lamden. Electronic Engineering, Feb. 1963 (Vol. 35, pp 109-112).
2. "Selective Amplifiers with Parallel-T Feedback", by E. F. Good. Electronic Engineering, May 1963 (Vol. 35, pp. 330-331, letter).
(The subject of the uses of the parallel-T network will be concluded in Part 11 next month. The article will deal with: variable tuning with constant bandwidth, third-order systems, an analysis of the parallel-T circuit, dependence of q_{0} on the ratio T_{1} / T_{2}, and the eightcomponent parallel-T network.)

Aerospace Instrumentation

New devices for detecting and recording physical variables described at Cranfield symposium

by R. Gregory

A prominent feature of aerospace engineering for some years has been the increasing use of the digital computer. Considering, for example, that the cost of flight testing a new aircraft such as the Boeing 747 "jumbo jet" is over $£ 8,000$ per hour, it is easy to see the justification for computers-and they are in fact used not only for data processing but also to store calibrations, to present results in appropriate engineering units and even for "file keeping". Current lechniques in this field were described at an international symposium on aerospace instrumentation hebd at the Cranfield Institute of Technology (formerly College of Aeronautics) from 23 rd to 26 th March. The symposium is a regular event and in the past has been jointly sponsored by Cranfield and the Instrument Society of America. On this occasion the Royat Aeronautical Society was also a sponsor.

Transducers

The use of digital information processing techniques implies the availability of data in digital form, but the transducer which will provide a pure digital output has yet to be conceived. A near approach to this has been a number of designs based upon change of resonant frequency of mechanical elements in sympathy with the measured parameter, thus giving an output in terms of frequency or period. A development of this was explained by members of the Kollsman Instrument. Corporation. The company's long' experience and detailed research into

Fig.1. Basic structure of the vibrating capsule loop.
precision altimeters led them to the understanding that the limit of accuracy for an aneroid altimeter was within the instrumentation rather than in the aneroid capsule itself. From this they have developed an altimeter relying upon the change of mechanical resonance ${ }^{1}$ of the capsule, Fig. 1, thus giving a change of natural frequency with pressure.

Advances in semiconductor technique have brought the semiconductor strain gauge forward to become a reliable and useful element in transducer design. There were a number of contributions on this subject and one, from the Kulite Corporation, explained how a $300-\mathrm{kHz}$ response pressure transducer has been developed using silicon as the diaphragm material with the gauges diffused into this base material. Further developments of this type of transducer included putting signal conditioning circuitry into the diffusion. Ether Lid presented a design for a low-range pressure transducer constructed in a similar manner but operating on magnoresistive principle (Ref. 1).

The force balance technique, Fig. 2, in

Fig.2. Sketch of a typical force-balance transducer system.
transducers strives at reducing mechanical motion to a minimum. The input parameter is first sensed by a mechanical element, but the resulting motion of this element is resisted almost completely by an electro-mechanical forcing system. The electrical input to this system is the output of the transducer. Thus in an ideal tränsducer, no mechạnical movement takes place. Modern designs take advantage of i.c. techniques 'for the necessary servo systems, and accelerometers yielding 0.1% accuracies over very
wide environmental ranges are now readily available and are physically only about the size of a cigarette packet.

Three papers dealt specifically with force balance transducers. A N.A.S.A. paper explained a triaxial angular accelerometer involving three servo loops, Fig. 3. As with all accelerometers, the

Fig.3. Triaxial accelerometer with three separate control loops.
device relies upon a spring restrained mass, the mass in this case being a sphere suspended within a fluid-filled cavity. There is a servo loop to control the temperature of the fluid so that its density is always that of the sphere, another, an electrostatic forcing system, to keep the sphere centrally suspended, and the third, an electro-magnetic servo to force the sphere to zero rotational displacement during parameter inputs. A very typical side study of this transducer was the necessity to develop a special rate table for test purposes.

Another paper from United Controls Corporation described a force balance multi-axis accelerometer system or "cluster" in which, by the use of cunning design, the effective centres of mass are all at a common point.

Progressing towards better reliability from the more conventional transducers, a paper from Vibrometer described how co-operation with European airlines, to develop vibration-measüring devices, resulted in a synthetic quartz accelerometer capable of operation at temperatures beyond $.600^{\circ} \mathrm{C}$. Endevco demonstrated their expertise in this field by exhibiting an accelerometer working

Fig.4. F.M. instrumentation recorder using "logic only" speed change.
within the flame of a blowlamp at some $630^{\circ} \mathrm{C}$.

Tape recorders

Magnetic tape is likely to remain a major recording medium for many years to come. This opinion was substantiated by the nine tape recorder companies
represented at the exhibition. Much of the R \& D of the ' 50 s and ' 60 s was put to developing precise analogue recorders, but latterly greater interest has been shown in digital recording, not only for direct computer memory use, but also for recording digital data. This has changed many of the philosophies in transport
design, particularly in the field of accident recorders where extremely simple transports suffice, some of them completely lacking fly wheels and belts and relying solely upon the speed control achieved from the use of an hysteresis motor.

A contribution from S.E. Laboratories gave a review of present precision instrumentation recorder design. Who would have thought a few years ago that the tape drive capstan would be mounted directly onto the motor shaft? Low inertia printed-circuit motors are being increasingly used with tight servo speed control, giving an overall response into the $200-300 \mathrm{~Hz}$ range; thus problems of wow and even flutter are becoming less of a design problem. Both analogue and logic i.cs are being used extensively. Tape speed change, for example, is now only a matter of electrical switching (Fig. 4)-there is no belt or pulley changing nor any filter or centre frequency changing, this all being accomplished by logic frequency division.

REFERENCE

"Magnetoresistance and its application", by B. E. Jones. Wireless World, Jan. 1970.

More Circuit Ideas (see also page 206)

Level-sensitive battery switch

Many present-day instruments are battery powered and not infrequently are inadvertently left switched on when not in use, resulting either in damage to the instrument through chemical leakage from Leclanche type cells or the destruction of the more expensive mercury or nickelcadmium types. The circuit shows a method of automatically switching off when the battery voltage falls below a predetermined level. So long as the supply voltage is sufficient to cause the zener diode to conduct, transistors Tr_{1} and Tr_{2} are switched on and the instrument functions

normally. Conversely, when the supply voltage drops below the diode breakdown level, $T r_{1}$ and $T r_{2}$ switch off. Transistor and diode leakage current still flows, but
with good silicon types this will amount to only a few micro-amps which is insufficient to cause damage, except perhaps over a very prolonged period. The price paid for this protection, apart from the cost of the components, is the zener diode current and the voltage drop across $T r_{2}$, which will be virtually constant provided it is bottomed. The circuit shown is suitable for a nominal 12 V battery, and switches off when the voltage drops below 9 V .
N. L. Bolland, Farnham Common,

Bucks.

150mW General Purpose Audio Amplifier

The design given here is straightforward and is suitable for intercom and many other uses. Prior to switch-on $V \dot{R}_{2}$ should be set to zero and then subsequently set to give 1 mA quiescent current through Tr_{3} and $T r_{4}$. The input impedance is 850Ω and 2 mV input is required for full output. This circuit was extracted from the Ferranti "E-Line Transistor Applications" handbook.

Ferrograph Y and P tape recorders for science, industry, broadcasting.

Ferrograph tape recorders are world-famous for their superb quality and many recording facilities. Ferrograph reliability is a by-word. Now Ferrograph introduce a new series of instruments, providing exactly what technical users have been asking for.
All are suitable for full-track, half-track and twin-track operation, all have 3 speeds, solid-state electronics, 3 motors, 3 heads, built-in loudspeakers, 8 d in dia. reels with adjustable reel height using standard tin. tape, quick start and stop. time-switch operation and
remote control.
Series Y recorders are designed specifically for use in laboratories and monitoring services where long-term reliability and consistency of performance are essential.
Three models cover the entire speed range from 18 $15 \mathrm{in} / \mathrm{sec}$. A 4 -channel $\frac{1}{2} \mathrm{in}$. in-line head reproducer having 4 low-level equalised outputs is also available.

Series P instruments have been evolved for radio. TV and film recording in studios and for field work. All have 600 Ohm balanced input and output per channel. Pluis everything else you expect
from a Ferrograph recorderexcellent performance, robust construction, careful screening, reliability for years on end. Ring or write for details:
The Ferrograph Co Ltd, The Hyde, Edgware Road, Colindale, London NW9, Tel: 01 -205 2241, Telex: 27774, or any of the following.

International Distributors

Leroya Industries Pty,
266 Hay Street, Subiaco,
Western Australia 6008,Australia: Matelectric,
Boulevard Leopold II, 199,
1080 Brussels, Belgium:
H Roy Gray Ltd
14 Laidlaw Boulevard,
Markham, Ontario, Cánada;

Cineco
72 Avenue des Champs Elysees, Paris $8 e_{\text {. France }}$:
Henry Wells \& CO, KG,
1040 Wien 4, Danhausergasse 3,
Austria;
Ferropilot GmbH \& Co., KG,
Hamburg 39, Sierichstrasse 43,
West Germany;
Hi .Fi Installations,
P.O. Box 2430,276 Andries Street,

Pretoria, South Africa;
Elpa Marketing Industries Inc,
New Hyde Park, New York 11040, New York, U.S.A.
There are Ferrograph Distributors also in most other countries. Please obtain details from the London office.

Ferrograph

CUNEEPT FGR THE 7 7 's

The new Storno fully automatic VHF/UHF radio communication system permits direct two-way selection dialling between mobiles and any telephone extension connected to a private automatic exchange. There are also facilities for car-to-car dialling and for predetermined selection of most frequently used extensions.

Stirnil is ready for the 70 's-and beyond

 FM radiotelephones are better
20-MHz Counter Timer

The information given here was extracted from a Motorola application note

The functional blocks, of the system are shown in Fig. 1. In the frequency mode of operation, the incoming signal is amplified or limited, as required. It is then conditioned by the pulse shaper in order to meet the constraints imposed by Matorola r.t.l. devices. The resulting pulse train, the frequency of which is directly dependent on the incoming frequency, is one of the inputs of the count gate.

The $1-\mathrm{MHz}$ oscillator signal is appropriately divided down, depending on the position of the frequency multiplier switch, and routed through the period selector to the second input of the count gate. This results in turning the count gate on for a specific "gate time". The output of the count gate is then a burst of pulses, the number of which is directly proportional to the original input frequency, These pulses are then counted by the decade counting units (d.c.us), each of which contains a b.c.d. decade counter, b.c.d.-to-decimal converter and produces one digit of the readout. The count is retained in the readout until the system is reset.

Resetting is accomplished by applying a "high", or logical one, to all direct clear (C_{D}) inputs of the flip-flops and decade counters. In the manual reset mode, this is done by a momentary push button switch.

In the automatic reset mode, and in all but the number five multiplier switch position the output of the seventh decade divider from the oscillator is used to do the resetting. This particular output goes high during the eighth and ninth second from zero time (that time immediately following the previous reset cycle). Once this high signal is applied to the C_{D} inputs, the devices are reset, therefore they are effectively reset at the beginning of the eighth second, In the number five multiplier switch position, since the gate time is ten seconds, it is necessary to take the auto reset signal from the third flip-flop output of the eighth decade divider and reset occurs at the 40 second point. Since it is necessary to hold each C_{D} high for a minimum of 100 ns to ensure resetting of all flip-flops, a one-shot multivibrator is used. The signal triggers the one shot, which holds the reset signal high for approximately $5 \mu \mathrm{~s}$. The $5 \mu \mathrm{~s}$ value is strictly arbitrary; however, consideration should be given to various propagation delays due to stray line capacitances and inductances, etc., throughout the system. The output of the one-shot is buffered to provide sufficient drive for all C_{D} inputs.

The operation in the period mode is essentially the same with one major exception. The incoming signal is routed through

Specification

Waveforms handled:	sine: square: or negative pulses with greater than 30 os duration.
Type of measurement:	frequency: period: random pulse counting with selected gate times.
Input impedance:	$10 \mathrm{k} \Omega$ typlcal, $7 \mathrm{k} \Omega /$ minimum la.c. $Z_{\text {in }}$ on the sensitive voltage range is dependent on the forward conductance of the input protection diodes, and diminishes rapidly under over-driven conditions).
Inpui frequency range:	$10 \mathrm{~Hz}-20 \mathrm{MHz}$ guaranteed. $4 \mathrm{~Hz}-30 \mathrm{M} \mathrm{Hz}$ typical.
Input period range:	50 nanoseconds to 100 milliseconds.
Gete time selection:	1 millisecond to 10 seconds in decade steps.
Input protection:	$\pm 50 \mathrm{~V}$ d.c.: 1 volt peak in the unattenuated position: conservatively up to 200 volts peak in the attenuated position.
Input sensitivity:	50 mV r.m.s. guaranteed. 25 mV r.m.s. typical.
Readout:	4-cight decimal: fixed decimal point location: ranging accomplished by rotary switch.
Accuracy:	$\pm 0.05 \% \pm 1$ count with self-calibration using line frequency. to $\pm 0.1 \%$.
Resetting: , ...	manual or automatic.-.

Fig. 1. Block diagram of the instrument.

Fig. 2. Pre-amplifier and pre-scaler.
the period selector and is used as the gate time of the count gate, whereas the oscillator signal is used as the events counted.

The self-contained calibration feature is obtained by simply counting the frequency or period of the $100-\mathrm{Hz}$ signal. For more accurate calibration an external signal is recommended. A calibration adjustment is provided in the oscillator section.

Pre-amplifier and pre-scaler

The pre-amplifier of Fig. 2 uses the MC1552G video amplifier. Two input amplitude ranges are provided, $50-300 \mathrm{mV}$ r.m.s. and $>300 \mathrm{mV}$ r.m.s. The 3 dB down points of the pre-amp. circuit only, in the unattenuated position as shown, are 4 Hz and 42 MHz for small signal applications. Input impedance is typically $10 \mathrm{k} \Omega$.

Since Motorola r.t.l. devices are guaranteed to only 4 MHz , a Motorola d.t.l. decade counter (MC838P) is utilized to extend the frequency range to 20 MHz .

Note that the $V_{C C}$ of +5 V for the decade counter is derived from the +6 V supply by placing a silicon diode in the line. This places $V_{C C}$ well within the supply tolerances of the d.t.l.

In order to attain the high frequencies specified care must be taken in constructing the pre-amp. Of prime importance is the shielding between input and output circuitry and for this reason double clad printed circuit board should be used, with the input and output components located on different sides of the board. In the prototype the pre-amp. was constructed in a separate box within the chassis.

Pulse shaper

As mentioned earlier, the pulse shaper's function is to condition the incoming signal to meet the input constraints of r.t.I., J-K flip-flops. The primary requirement is for the fall time of a flip-flop's clock pulse inputs to be within the range of 10 to 100 ns . (Not applicable to the MC778P). This is accomplished by using one-half of a hexinverter, connected in a Schmitt trigger configuration as shown in Fig. 3. Under worse case conditions ($15^{\circ} \mathrm{C}$ and 4 MHz) input hysteresis is about 2 V . Inputs to the pulse shaper can be periodic waves of any form or random pulses. The one constraint is a minimum input pulse duration of 30 ns .

Fig. 3. Pulse shaper. Note that pin 4 is not connected directly to the earth line; the other half of the i.c. cannot be used for other purposes.

The output rise and fall times are less than 100 ns for frequencies down to 10 Hz .
The output of the pulse shaper is diodecoupled to a buffer which provides adequate drive.

Diode rather than capacitive coupling is used because of the large value of capacitance that would be required at the lower frequencies of the counter. A large capacitance would result in a very large time constant and require an electrolytic capacitor that would become inductive at high frequencies.
The IN4001 diode was chosen since it functions somewhat as a capacitance at the higher frequencies due to its 50 pF , or so, of junction capacitance. At the lower frequencies it is more advantageous than a capacitor since it prohibits the signal input to the buffer from going below ground. The diode also drops the d.c. level by 0.7 V and ensures the required $V_{\text {off }}$ level of the r.t.l. buffer.

Crystal controlled oscillator

In the oscillator of Fig. 4 two gates are cross-coupled to form a free-running multivibrator whose square-wave output frequency is locked by the crystal. The resistors serve as biasing elements, in addition to being a part of the circuit time constants. With the crystal placed as shown, however, R_{1} and C_{1} determine the period. Since R_{1} also establishes the bias of the gate input, and must be fixed for a given $V_{C C}, C_{1}$ and the crystal, of course, would be changed if another frequency is desired. Typical values of C_{1} for other frequencies are 430 pF for 500 kHz and $0.001 \mu \mathrm{~F}$ for 100 kHz .
The trimmer capacitor permits exact adjustment of the frequency, which is stable

Fig. 4. 1-MHz crystal oscillator, high gain gates should be selected for this circuil.
to within $\pm 0.01 \%$ from $+15^{\circ}$ to $55^{\circ} \mathrm{C}$, without a crystal oven.

Period selector

The function of the period selector is to accurately select one, and only one, period of either the incoming signal to the counter, with the counter in the period mode, or of the oscillator, with the counter in the frequency mode. The period selected, in the form of a low or logical zero, is then used as the gate time for the NOR logic count gate. In the period mode, the count gate allows passage of the oscillator signal for one period of the incoming signal. In the frequency mode, the count gate passes the incoming signal for one period of the oscillator signal.

The period selection is accomplished by using a dual J-K flip-flop connected as shown in Fig. 5. The initial state is preset
(during the reset cycle) so that the Q outputs of both devices are in the low state. The first negative transition of the incoming signal causes Q_{A} to go high. The second negative transition causes Q_{A} to go low, which in turn causes Q_{B} to go high. The high output of Q_{B} is passed by the two series connected NOR gates to the direct clear of $A\left(C_{D A}\right)$, which inhibits any further transitions until the devices are reset. As can be observed, the high condition of the Q output of flip-flop A exists only during one complete period of the input to the period selector. This high state is inverted and becomes the gate timing signal.

During the normal operating sequence of the period selector, C_{DB} must be kept low and $C_{D A}$ must be connected to Q_{B} In order to reset the selector, both C_{DA} and $C_{D B}$ must go high. A d.p.d.t. switch could perform this function, were it not for contact bounce. This problem is further discussed in the manual reset section. The use of the gating arrangement rather than a switch will then become clear.

Manual reset

The counter is reset by setting the Q outputs of all flip-flops to the low state. This is accomplished by making all direct clears high.
The circuit used is independent of the duration of contact bounce, and meets all constraints of the devices being used. It is, in essence, a bistable multivibrator. Fig. 6 with its accompanying table, illustrates the various high and low states of the possible switch conditions. As the table shows, once the switch arm makes contact with either the normally closed (N.C.) contact, or the normally open (N.O.) contact, no amount of bounce can change the state of the output. The only restriction for the switch arm is that it cannot rebound completely between the N.C. and N.O. contact. (Switches of this variety could be called choppers or vibrators.) As in a true switch action, this arrangement yields the complimentary output, either a momentary ON or OFF condition. In this system, unused sections of quad gates are used in the switch to perform the necessary inversion. For this purpose, gates, buffers, or inverters can be used.

One-shot multivibrator

As explained earlier the one-shot maintains the reset pulse for 5μ s to insure complete reset. Fig. 7 illustrates the one shot configuration of two r.t.l. NOR gates and only one resistor and capacitor. In a quiescent condition, prior to an input pulse, a steady current flows through R applying a high voltage level or logical " 1 " to B1. This results in a logical " 0 " at B3 which is fed back to input A2. Since both A inputs are at a logical "0" at this time, A3 is at a logical " 1 " level. There is little charge stored in C since both plates are at about the same potential.

If a positive going pulse (logical " 0 " to logical " 1 ") is now applied to input A1, A3 goes low and C begins to charge. The high initial charging current through R

Fig. 5. Period selector.
drops the voltage at B1 to a logical "0" that, together with the permanent " 0 " at B2, switches output B3 to a logical " 1 ". This " 1 " is fed back to input A2 and maintains A3 at a low level until C charges to the point where B1 reaches the logical " 1 " threshold level. Then output B3 is switched to a " 0 " completing the generation of the monopulse. The " 0 " at B3 is fed back to A2 and the one-shot has returned to its original quiescent state.

The presence of this feedback loop makes the duration of the one-shot output relatively independent from the duration of the trigger input. It insures that the output of gate A will remain a " 0 " after the trigger input has reverted to a " 0 ". Thus the duration of the "l" output from the one-shot is determined by the value of R and C, not the time duration of the trigger.

Decade counting unit

In this counter a decade counting unit is a device which contains a divide by ten counter, a b.c.d.-to-decimal decoder and a numerical readout.

As shown in Fig. 8, the divide-by-ten function is accomplished very simply by using the Motorola MC780P decade counter.

Switch stotus	A 1	A 2	A	B 1	B 2	B 3
NC contact	0	1	0	1	0	1
Interim bounce ofter NC contact	1	0	0	1	0	1
NO contact	1	0	1	0	1	0
Interim bounce after NO contact	1	0	1	1	0	0

Fig. 6. Manual reset function.

Fig. 7. One-shot multivibrator.

The most inexpensive way of performing the decoding and readout function is by using the current summing technique. Here, the outputs of the MC780P are used to control the on-off condition of four

Fig. 8. Decade counter unit with meter readout.

MC724P

MC790P

Fig. 9. Pin connections not shown on the other drawings.
transistors. The values of the collector resistors form a sequence in which each is twice the preceding, resulting in binary weighted collector currents. The currents are brought to a summing junction and since the aggregate current can be in only one of ten discrete states, it is readily displayed on a current meter with a zero to nine scale. An accumulative error of even $\pm 0.25 \mathrm{~mA}$ still allows plainly discernable readings. For best results, however, 1\% precision resistors are recommended. The resistor values chosen provide more than 10 mA to the meter. This allows shunting of the movement to compensate for meter variations.

Switch functions

The input sensitivity switch $(50-300 \mathrm{mV}$ or $>300 \mathrm{mV}$) selects the most beneficial input impedance and protection for the two positions provided.

The input frequency range switch has two ranges: the f position permits measurement over the 10 Hz to 4 MHz range and the $\mathrm{f} / 10$ position causes the input frequency to be divided by ten, extending the range by almost an order of magnitude up to 20 MHz . An MC838P d.t.l. decade counter is used to divide the input frequency by ten, as shown in Fig. 11, and imposes the requirement of a $1 \mu \mathrm{~s}$ input fall time for toggle operation. This constraint and input signal rise time determine the 'minimum operating frequency of the counter. The maximum oper-
ating frequency is also determined by the MC838P which is guaranteed only to 20MHz.
The operate/calibrate switch switches the 100 Hz line frequency to the pulse shaper for a rough calibration check.

The frequency/period switch selects the mode of operation. Essentially it interchanges the input signal and the internal oscillator signal routing to the count gate inputs.

The period/period $\div 10$ switch provides a reduced frequency clock signal to the d.c.us to allow the longer periods to be read without over-ranging the readout.

The frequency/period multiplier and gate time switch provides decade ranging for both frequency and period measurements, selects the gate times for random pulse counting, and establishes the recycle time in the automatic reset mode.

The auto/manual switch selects the input signal sampling mode. The manual reset button is a momentary push button which resets and recycles the input signal sampling manually. The on/off switch is selfexplanatory.

Power supply

A power supply circuit is not given here. Two d.c. voltages are required 6 V at 100 mA and 3.6 V at 500 mA . A low voltage 100 Hz output is required from the power unit as a calibration signal.

Additions

and Corrections

In the article "Tone-balance Control" in the March issue the following section was inadvertently omitted from p. 124, column 3. It should be inserted between "to" and "frequencies" in the 19 th line from the bottom. "provide a chosen maximum bass boost of $\times 2.5$ and the nearest standard value of $68 \mathrm{k} \Omega$ was selected. At low frequencies $1 / \omega C_{1}$ becomes very large and equation (2) reduces to

$$
\frac{V_{E}}{V_{A}}=-\frac{R_{1}+R_{3}}{R_{1}+R_{2}}
$$

The condition for maximum bass boost is $R_{2}=0, R_{3}=100 \mathrm{k} \Omega$.
${ }^{\prime}$ "Next the value of $R_{4}=R_{4}$ ' was calculated to give a maximum treble boost of $\times 2.5$. At high frequencies $1 / \omega C_{1}$ becomes very small and equation (2) reduces to

$$
\frac{V_{E}}{V_{A}}=-\frac{R_{1} R_{2}+R_{1} R_{4}+R_{3} R_{4}}{R_{1} R_{3}+R_{1} R_{4}+R_{2} R_{3}}
$$

The maximum treble boost condition has $R_{2}=$ $100 \mathrm{k} \Omega$ and $R_{3}=0$. The standard value of $22 \mathrm{k} \Omega$ was selected.
"Finally, the value of $C_{1}=C_{1}{ }^{\prime}$ was calculated using the second root of equation (3), which is

$$
\frac{1}{\omega^{2} C_{1}}=R_{1}{ }^{2} \quad \begin{aligned}
& R_{2}+R_{3}+R_{4}-R_{4}{ }^{2} \\
& \ddot{R}_{2}+R_{3}+2 R_{1}
\end{aligned}
$$

so as to give a crossover frequency of 800 Hz , giving $C_{1}=4100 \mathrm{pF}$. The value actually used was 1500 pF in parallel with 2200 pF (both polystyrene) giving $C_{1}=C_{1}{ }^{\prime}=3700 \mathrm{pF}$ and a calculated crossover frequency of 880 Hz .
"The selected component values were substituted back in equation (2) and the system gain was calculated for a number of"

The following corrections should be made to the article "Stabilized Power Supply" by A. J. Ewins which appeared last month. The collector of Tr_{2} in Fig. 4 should be connected as shown in Fig. 3. In Fig. 8 there should be no connection between position 6 and the wiper of $S_{2 \sigma}$ and similarly in Fig. $9(a)$ there should be no connection between $S_{2 b}$ position 1, and the 250 Q potentiometer. Finally amend note in Fig. 9(b) to read " $+V$ output terminal".

Supply of low-noise f.e.ts

The Amelco low-noise field-effect transistors specified for the " 80 -metre S.S.B. Receiver" (March 1970) and for the "Simple Audio Pre-amplifier" in this issue, are available from Souriau Lectropon Lid, Shirley Avenue, Vale Road, Windsor, Berks. The price is 6 s 8 d for the 2 N 4302 and 8 s 3d for the 2N4303.

From the recent

London Physics Exhibition

Digital topics: Opto-electronics: Capacitor-transistor delay line

An example of what can be done with adaptive logic was demonstrated by Twickenham College of Technology. An adaptive logic gate is in fact a combination of gates which are capable of carrying out any logic function on the inputs applied to it as directed by separate control inputs. If wished, the control input to a particular gate can be derived from the output of another adaptive logic gate and in this and other ways extremely complex networks can be built up. The whole point is that a network is not necessarily purpose-built for a particular application and the network adapts itself to perform the function required of it-which may not necessarily be known in the first instance. Much work is being done in the use of adaptive logic for pattern recognition purposes.

Twickenham College of Technology showed an adaptive logic network operating in conjunction with a simulated vehicle routing system. The position of a vehicle was indicated on a c.r.t. and was determined by the contents of two bi-directional binary counters, one operating in the X and the other in the Y plane. The output of the adaptive network was used to control the direction of the two counters and the object was to establish as many routes as possible between two arbitrarily selected points within a specified number of steps.

In the system the control inputs of the adaptive gates were connected to binary counters so that every possibility was tried in turn. The adaptive gates were arbitrarily connected and the connections were altered after trials with the object of finding the most successful network.
I.C.L. were demonstrating speech recognition equipment which enabled a complex computer programme to be controlled by unskilled operators who merely had to answer Yes, No, Wrong or Stop in response to instructions and questions presented on a c.r.t. by the computer. The speech analyser used split the sound into a number of parallel paths, each path being employed to recognize the presence or absence of some particular feature.

Some of these features are indicative of the way in which speech sounds are produced. For example it is possible to distinguish between voiced and unvoiced sounds on the basis of relative energy
content. A voiced sound is a vowel or vowel-like sound produced when air is forced through the vocal chords causing them to vibrate. The resulting puffs of air excite the resonances of the vocal tract. These resonances are called formants. The formant frequencies are dependent on the position of the tongue and lips as these affect the shape and volume of the resonant cavities. Information about the speech sounds is conveyed by the formants rather than by the pitch of the voice (frequency of vibration of the vocal chords). An unvoiced sound is produced when air is forced through a narrow constriction in the mouth or throat, producing a hiss-like sound. Stop sounds, e.g. "t" in eight, are characterized by a short period of silence followed by a plosive sound as the built up air pressure is released.

Other features provide information as to where in the mouth the speech sounds were produced. Thus in the speech analyser, there are circuits for measuring the frequencies of the two lowest formants. At present, the outputs of these circuits are classified into one of four frequency levels. There is also a circuit for detecting high-frequency unvoiced sounds, e.g. "s" in see.

A computer for educational purposes was shown by the University of Durham in conjunction with the Darlington College of Technology which was designed and built with the aid of a grant from the National Research Development Corpn.

It does all the things one would expect an educational computer to do and has a 128 -word store (a word is 12 -bits long) which enables some useful computing to be done. Integrated circuits and printed circuit cards help limit the cost to something less than $£ 2,000$. Further information may be obtained from I. Sagues, Computer and Automation Group, N.R.D.C., P.O. Box 236, Kingsgate House, 66-74 Victoria St, London S.W.1.

There is a growing interest in the possibility of having communications
systems operating at infrared or light frequencies. The main attraction for the developers here is the enormous number of channels available and also the complete immunity from electrical interference. Military authorities have a special interest in communications at light frequencies because a further advantage is that information transmitted over an optoelectronic link can be received only at the intended reception spot and it cannot be tapped en route.

The principles of communication at light frequencies were described in the November 1968 edition of Wireless World pp. 393-5 where we reported on techniques for generating sub-millimetre waves, and how since the development of the laser, coherent optical transmissions have extended electromagnetic radiation into the visual spectrum of frequencies.

Two examples of infrared communication could be seen at the exhibition. The first was a simple audio rig by the North Staffordshire Polytechnic comprising a gramophone pickup at the transmitting end and an amplifier and loudspeaker at the receiving end. Signals from the pickup were amplified and used to modulate the current passing through a gallium arsenide diode. Modulated infrared radiation emitted from the electroluminescent diode was received by a silicon phototransistor some distance away and the pholocurrent, after suitable amplification, was used to operate a loudspeaker. The circuits were developed from original ideas from Mullard and the second example of infrared communication to be seen was a similar set-up by Mullard themselves. This system was operated from internal 9 V batteries to demonstrate its portability and since both diode and phototransistor work at wavelengths of the order of 0.9 m ordinary glass lenses were used for focusing. The prototype is claimed to work satisfactorily at a range of 600 ft .

Both systems are intended for physics teachers to demonstrate the nature of infrared radiation. The techniques used have been known for a number of years. It is probable that the really advanced experiments in infrared communication are taking place behind locked doors in government research establishments and these will not see the light of day (or night) until they become redundant militarily.

A rather more ambitious system by Mullard, this time using light frequencies $(0.63 \mu \mathrm{~m})$ transmitted through a 10 ft length of glass fibre bundle, demonstrated the transmission of a $4-\mathrm{MHz}$ bandwidth television picture from a nearby camera tube, through the fibre-optic system, and displayed on a standard TV monitor. This had an electro-optic modulator at the transmitter and a photodiode at the receiver. Self-aligning plug-in mounts were employed thus allowing the interchange of light sources and fibres.

The light source used in the exhibit was a small tungsten bulb and a lens focusing the light through the modulator on to the end of the fibre bundle.

Interest here was mainly the design of the modulator itself. It consisted of two crystals of ammonium dihydrogen phosphate (a.d.p.) separated by a half-wave plate. The incident light beam travelled through the crystals as two rays polarized at right angles, known as ordinary and extraordinary rays. The ordinary tay travelled normally through the crystal for normal incidence whereas the extraordinary ray was refracted through a small angle. The crystals were arranged so that the two rays coincided on emergence from the modulator. The half-wave plate rotated the polarization planes of the two rays through 90° so that the ordinary ray in the first crystal became the extraordinary ray in the second and vice versa This cancels the natural birefringence and provides temperature compensation for changes in the refractive indices.

The rays travel through the crystals with different velocities depending on the applied electric field. Incident plane polarized light emerged elliptically polarized. A polarizer set at right-angles to the incident plane selected the component of polarization induced by the modulator. The intensity is given by

$$
I=I_{0} \sin ^{2}\left(\frac{\pi V}{2 V}\right)
$$

where V is the applied voltage and V_{o} the half-wave voltage. The half-wave voltage at $0.63 \mu \mathrm{~m}$ is 260 V . Capacitance of the modulator is 46 pF . A frequency range of $0-36 \mathrm{MHz}$ is possible, using a $100-$ source impedance.

Standard Telecommunication Laboratories were also showing a wideband optical communication system using an injection laser and glass fibre waveguide. The laser was pulse-code modulated by switching the pump current, allowing repetition rates up to about 1 GHz . A feature of this system is that long communication links are possible using as many repeaters as necessary because p.c.m. repeaters can be cascaded indefinitely.

The exhibit simulated a $75 \mathrm{Mbit} / \mathrm{s}$ signal which was fed into a pulse amplifier. This used eleven BFY90 transistors with their collectors distributed along a $1-\Omega$ stripline feeding the GaAs laser. Current through the laser was switched between 0.1 A and I.IA and the p.c.m. optical signal thus developed was coupled to a glass fibre transmission line. This was terminated by
a photodiode, the received signal being amplified and fed into a regenerator which re-timed and re-shaped the pulses.

A drawback to this system is the need to cool the laser for operation at high duty ratio, but STL say they are pursuing a lead which may make a room-temperature laser possible.

Analogies with everyday objects have found common usage in electronics language to provide simple explanations of the principle of operation of some basic circuits, although sometimes the object to which the circuit is analogous is equally vague to some. For example, what to an Englishman is a "box-car"? He is more likely to derive his explanation the other way round by observing the waveform to which it is supposed to have a likeness.

Readers may feel things have gone slightly too far when a temporary storage device for electronic signals is described as a 'bucket-brigade delay line' because its

configuration is said to resemble an old-time fire brigade passing along buckets of water. Since it was developed by Philips' Eindhoven laboratories however, it could be dismissed as being DoubleDutch!

In fact this was an interesting piece of equipment based on a chain of storage capacitors and charge transfer circuits acting as an analogue shift register with externally variable shift rate. It is suitable for delaying audio and TV signals. Outstanding among the advantages over L / C and glass delay line systems is the facility to vary the delay time over a wide range.

Information is transferred along an array of capacitors as a moving charge "deficit" with one transistor per capacitor. This circuit could easily be made as an i.c. Two complementary clock signals are used, with a frequency equal to the frequency with which the input signal is sampled. The device provides a delay in which bandwidth and delay are inversely related and variable within wide limits, thus: $n=4 B T$, where $n=$ the number of 'buckets', $B=$ bandwidth and $T=$ time delay. Signal delay is varied electronically by varying the clock frequency which can be precisely controlled or synchronized. One application which can readily be foreseen is to compensate for undesirable echos from widely spaced loudspeakers in public address installations.

New applications for colour television continue to be found. What at first sight looked like a colour TV designer's nightmare on the stand of Delft University of Technology, Netherlands, turned out to be a demonstration of the deliberate distortion of hues for the purpose of medical diagnosis. It was done by an electronic process of expanding the colour differences of colours which lie in the yellow/red sector of the chromaticity diagram, i.e. colours which cover flesh tones, and compressing the colours which lie outside the area of interest. For purposes other than medical (e.g. colour matching), any sector of the chromaticity diagram could be selected depending on the axes chosen for the quadrature modulators.

Because colours outside the area of interest are compressed and those inside are multiplied by a factor of 6 , the colours seen on a TV monitor screen are untrue, but this is of little consequence in diagnostic work. The important point is that small changes in skin colouring, indiscernible by normal observation, become substantial changes when viewed on the screen.

It is important to retain as much of the original information as possible, particularly luminance relations, and for this reason the luminance signal Y is extracted in a matrix, leaving the two colourdifference signals for processing independently of Y. Unconvinced that we were not watching just a colour TV with a very poor grey scale, we asked the demonstrator to scan a black card covered by a white cross-hatch. It reproduced perfectly on the monitor receiver-in black and white.

In developing a sonar system for charting the ocean floor out to a range of 12 nautical miles $(22 \mathrm{~km})$ the National Institute of Oceanography has devised an efficient piezo-electric transducer operating at about 6.5 kHz and capable of delivering 600 acoustic watts (duty cycle 1:6).
The transducers are unusual in that they have no nodal mounting. They are secured in a pressure casting by a bezel ring around the edge of their diaphragms. The diaphragm is a cheese forging in aluminium alloy RR77 to provide a high fatigue limit and low hysteresis. In order to inhibit any stress corrosion due to flexing near the ring the complete transducer diaphragm is coated electrostatically with an epoxy resin. The main advantages of such a method of mounting are manufacturing simplicity, low mechanical losses, a reliable water-proof seal, and the availability of a pressure release medium for the rear surfaces provided by the air in the casting. The active material is lead zirconate titanate with a particularly low dielectric loss for high power operation.

The whole truth and nothing but the truth m'lud. That's how we at Electrosil have always played it. So we welcome the new Trade Descriptions Act which is sorting out the sheep from the goats with a vengeance A few of our glass-tin-oxide resistors do sometimes vary from their stated parameter when we make them. How many? No more than 0.012% of total shipments in 1969 were returned as 'quality' rejects -and we make and ship millions. Who else can fail as successfully as that? Disprove these figures and they can bring on the fetters and bread and water Time and again. Electrosil lass-tin-oride resistors cquit themselves with distinction in conditions of
severe environmental shock
and humidity. Because we achieve a statistical failure rate of $0.00067 \% / 1,000$ hours with a 60% confidence based on 134 million unit hours of testing with
zero failures.
Electrosil glass-tin-oxide resistors, there-ore, give an overall economy based on high reliability
Judge for sourself.
ELECTROSIL. LIMITED,
P.O. Box 37, Palion.

Sunderland, Co. Durham
Telephone Sunderland 71481 Tolex 53273

Electrosil

have the experience

Scope for Going Places

The EM102 offers you a portable oscilloscope with an ideal performance at a realistic price. Just check its specification $(10 \mathrm{kV}, 20 \mathrm{nS} / \mathrm{cm}$. writing speed plus sweep delay). It's designed for laboratory applications but fulfills the role of a completely self-contained unit for servicing purposes. Take it anywhere - it's mains or battery powered with a built-in battery option.

Plug-in units are available with bandwidths from d,c, to 30 MHz , voltage sensitivity down to $1 \mathrm{mV} / \mathrm{cm}$. If you have an application for an Oscilloscope for use in the laboratory, in the field, or in any unusual environment, write or ring today for information, details or an immediate demonstration.

From $£ 315$.

SE Laboratories (Engineering) Limited. North Feltham Trading Estate, Feltham, Middlesex. Telephone:01.890 1166\&5246(sales):01.890.5876(works). Telegrams: Selab, Feltham. Telex: 23995.
Northern Sales Office. Bessell Lane. Stapleford, Nottingham. Telephone: Sandiacre 3255.

Track-while-scan Radar System

How a radar system is used with a computer to provide automatic target tracking

by J. L. Sendles*

Radar contacts derived from a conventional surveillance pulse radar are normally displayed on a plan position indicator (p.p.i.). The formation of tracks from the radar "paints" has hitherto been carried out by an operator by keeping a joystick controlled marker nearly coincident with successive radar paints.

This method of tracking has two main disadvantages; firstly it requires the fulltime attention of a man who can track up to about eight surface, or one or two air, tracks (the actual number of targets capable of being satisfactorily tracked depends on the degree of manoeuvre of these targets), and secondiy, in order to achieve reasonable tracking accuracies, expensive p.p.i. displays with minimal registration errors are necessary.

Attempts have been made in the past to produce a completely automatic contact initiation and tracking system capable of processing information from pulse surveillance radars, but due basically to the presence of excessive clutter (interference) in certain environments these systems have now been rejected in favour of the less sophisticated systems which take advantage of the human operator's considerable skill in detection and subsequent initiation of radar contacts. Once initiated, the contacts are automatically tracked by a digital data

* Elliott Bros.
processing system which is the subject of this article.

The advantagés of this automatic radar contact tracking system are, firstly, that the man is relieved of the tracking task and can therefore devote virtually his full attention to the detection of contacts and initiation of tracks and, secondly, greater tracking accuracies than those possible from a purely manual system are in general obtained.

The article describes an autotracking system which has operated with an X -Band maritime navigational radar and an S-Band surface and air surveillince radar. Both of these systems have been successfully proved at sea. Also described is an autotracking system for a (ground-based) three-dimensional \mathbf{C}-Band air surveillance radar which has also been successfully proved.

System description

All autotracking systems to be described are based on similar equipment which is shown in block diagram form in Fig. 1. The display incorporated in these systems is a 16 -inch horizontal p.p.i. which displays synthetic alphanumeric information supplied by the character generator, interlaced with the conventional radar range and bearing information derived from the radar's aerial bearing, video and

Fig. 1. Track-while-scan block diagram.
synchronization signals. Attached to the display console is a general purpose keyboard and "rolling ball" module, the outputs of which are processed respectively by the keyboard decoding unit and the reversible counter unit, the outputs of which are fed to the 920 computer via the peripheral controller.

The "rolling ball" provides a means of manually moving a synthetic marker on the p.p.i. display which, in conjunction with the keyboard, is used to initiate or cancel tracks. The outputs from the radar to the autotrack peripheral equipment are the radar video signal, the radar synchronization pulse and the aerial's bearing which is the output of an incremental encoder together with a ship's head marker signal. In the case of the three-dimensional radar the beam's elevation is also controlled by a data processor and is fed by the computer to the radar via the peripheral controller and the autotrack peripheral equipment.

The computers incorporated in these systems are members of the Elliott 920 computer series. The associated paper tape station comprises a paper punch, reader, controller and power supplies.

Two-dimensional surface and air surveillance

A block diagram of the track-while-scan (t.w.s.) peripheral equipment is shown in Fig. 2. The t.w.s. facility is manually initiated by an operator viewing the p.p.i. display and placing the synthetic rolling ball marker over the radar paint of the contact he wishes to track, and by feeding the appropriate instruction to the computer using the keyboard. The computer immediately stores the cartesian co-ordinates of the target and begins to track it. The computer also calculates the polar co-ordinates of the target (range and bearing R_{t} and B_{t} and derives the co-ordinates of the t.w.s. window; indicated by the shaded area of Fig. 3. This window is defined in the equipment by the opening of two gates, the range gate and the bearing gate. The bearing gate start (or open) signal is derived by comparing the output of a position digitizer attached to the radar aerial with the bearing of the leading edge of the window, already calculated by the

Fig. 2. Block diagram of the track-while-scan peripheral equipment.
computer, and opening the bearing gate (BGS) when coincidence occurs, i.e. when the aerial is in line with the leading edge of the t.w.s. window.
As soon as the bearing gate opens $1_{\mu} \mathrm{sec}$ spaced pulses are fed to the range counter of Fig. 2. The contents of this counter are compared with the contents of the range gate start register which holds the range of the t.w.s. window previously calculated by the computer. When the contents of the range counter are the same as the contents of the range gate start register shift pulses at $0.5 \mu \mathrm{sec}$ intervals are allowed to reach the sequence register. By virtue of the circuitry just described these shift pulses only reach the sequence register when the radar aerial is receiving returns from the area defined by the t.w.s. window.

Video signals, after being processed in a manner to be described later, are fed to the data input of the sequence register and can have the value of 1 or 0 depending on whether the signal is above or below a computer controlled threshold. After 18 shift pulses (9.5μ secs) the shift pulses are stopped and the contents of the sequence register are transferred to the computer.

At the start of the next radar pulse repetition interval the range counter is reset and the process is repeated.

Before arriving at the sequence register the video signal passes through the video processor unit and the threshold control unit. The purpose of the video processor is to ensure that the input to the threshold unit is virtually independent of receiver output noise variations caused by receiver gain changes-which is particularly important when autotracking targets which give a weak return signal.

The threshold control unit comprises a six-bit digital to analogue converter which
is driven by the computer. The d.a.c. output is differenced with the output of the video processor unit in order that the video, after being quantized and processed, is controlled in bearing width for each target plot being extracted to approximately one beam width. The actual threshold control programme within the computer in order to achieve optimum performance depends on factors such as the type of radar and its mode of operation.

The process of video digitization over the extent of the sequence register starting when the range and bearing gate opens continues on each p.r.i. until a sufficient area around the contact's indicated position has been covered. A pictorial representation of the information which is derived and stored in the computer for further processing is shown in Fig. 4. The black areas represent points at which the processed video is above the computer controlled threshold and the remaining areas represent points at which it is below.

Controlling by the threshold control unit the threshold level above which video will enter the sequence register is a valuable facility, particularly when tracking surface contacts, for two main reasons; the first is that greater tracking accuracies can be achieved and the second that greater discrimination can be obtained in a multicontact environment.

Plot extraction

Plot extraction techniques for conventional surveillance pulse radars are well known and basically involve what is known as moving average detection criterion (m.a.d.c.).

The m.a.d.c. which is used to detect the

Fig. 3. Position of the t.w.s. window.

Fig. 4. Returns in the t.w.s. window.
start and end of a plot states that a target start is established if, at any particular range, three out of five (say) quanta are present, and the end of a target is detected when the average drops to two out of five or less. With this particular criterion of three out of five and referring to Fig. 4 it can be seen that target starts occur at R_{4} $\left(B_{3} B_{4} B_{50} B_{6} B_{3}\right)$ and $R_{5}\left(B_{4} B_{50} B_{6} B_{7}\right)$.

Having established the extent of the target by means of the m.a.d.c. as described above the computer next derives its centre and thereby the co-ordinates (B_{n}, $R J$ of the target with respect to the window, and thence to a suitable datum.

This plot extraction procedure, leading to the derivation of the target's co-ordinates or plot, is repeated on each aerial rotation. The position of the 'window' is fixed in the first instance as we have seen by means of a manual injection but subsequently its position is predicted as a result of a target tracking and smoothing programme.

Three-dimensional air surveillance

As can be seen from the track-while-scan system block diagram shown in Fig. I, the only difference between two- and threedimensional systems as far as the equipment is concerned is that in the case of the three-dimensional system the elevation of the aerial's beam, which is driven electronically, is computer controlled via the peripheral controller. The main difference between the two systems is in the computer plot extraction programme which, as its name suggests, derives the contact's position (or plot) from the quantized video input to the computer.

Having described the plot extraction process which has been adopted for the
two-dimensional surveillance radar, we shall now consider the three-dimensional case. As stated previously the elevation of the aerial's beam is electronically controlled via the computer so therefore. by means of a suitable programme, it is an easy matter to execute an elevation scan as the aerial rotates at a constant speed such that the bearing separation between each vertical scan does not exceed the horizontal beam width, and also the elevation separation between each range scan does not exceed one vertical beam width, see Fig. 5. In this way the video signals returned from a volumetric element of sky are digitized in the same way as in the two-dimensional case and are stored in the computer in 'bearing blocks', for subsequent processing using the moving average detection criteria in order to derive the range, elevation, and bearing of the 'plot'.

Cases often arise, both in the surface and air environment, where two contacts. after all processing including integration by the m.a.d.c., remain within the same 'window'. Examples of this are a ship passing a buoy, two ships passing, a ship passing close to shore, a ship in a clu/ter environment, aircraft passing, aircraft in a clutter environment etc.

In order to minimize the requirement for manual override in such confused situations, which obviously is one method of resolving the problem, a detection shape criterion was introduced into the system. This ensures that only genuine contacts or contacts which appear to be genuine are accepted. Furthermore, it is possible by this means to detect merging tracks and thereby to predict the contact's established track until the two contacts again separate, when derived plots are once more used to update the track. Lost situations occur due to fading contacts, which can either be long term or short term. Short term fades are no problem since the loss of one plot normally has little effect upon the track formation. Long term fades in the presence of established non-manoeuvring contacts are again no problem since when the contact reappears it will be sitting at or near the centre of the "window' which is predicted on by the tracking programme in lost situations. The circumstances which normally require manual intervention are those in which an extended contact fade is accompanied by a contact manoeuvre so that when the contact reappears it does not appear in the predicted window.

Results

Fig. 6 shows the range and bearing plots derived by the two-dimensional track-while-scan system from a slow air contact with a speed of 100 kn , detected on a medium range air/surface surveillance radar which has a p.r.f. of 400 Hz and an aerial rotation rate of 1 rev. per 2.5 seconds. No confused plots and only isolated missed plots occurred due to contact fading.
Fig. 7 shows the range and bearing of plots derived by the two dimensional track-while-scan system from a surface

Fig. 5. (Above) Three dimensional x.w.s.
Fig. 6. (Right) Range and Bearing plots of an air contact travelling at 100 knots using the two-dimensional track-while-scan system.

Fig. 7. Plots derived from a surface contact using the two-dimensional track-while-scan system.

Fig. 8. Plots in bearing and elevation obtained from the three-dimensional track-while-scan system.
contact. Smoothing of this data is carried out by a track smoothing programme which follows the plot extraction programme. This contact was detected by a navigational radar which has a p.r.f. of 1000 Hz and an aerial scan rate of 1 rev. $/ 2$ secs. The contact is that of a slowly moving surface vessel at a range of 25 miles. The radar echo was rather weak and consequently short sequences of missed plots occurred which amount to 30% of all plots. Two steps of $4 \times 1 / 96 \mathrm{dm}(\mathrm{dm}$-data miles $=$ $2000 \mathrm{yd})$ can be seen on the range plot, which is equivalent to one $\frac{1}{2} \mu$ s range increment (which is the resolution) of the sequence register. The other variation in the range plot is caused by the averaging which is being carried out within the computer.

Fig. 8 shows a graph of the plots in bearing and elevation against range obtained from the three-dimensional air

Fig. 9. Three-dimensional air surveillance radar aerial.

Fig. 10. The Elliott computer installation used in the track-while-scan system. The 920M micro-miniature computer employs a $16 k$ word store.

Fig. 11. Horizontal p.p.i. display.
surveillance track-while-scan system while tracking an aircraft target with a speed of about 300 miles/hour.

The aerial of the three-dimensional air surveillance radar is shown in Fig. 9. Elevation scánning is performed by electronic switching, whereas azimuth scanning is achieved by the aerial rotating about a vertical axis. Fig. 11 shows the horizontal p.p.i. display on which the range and bearing of the radar contacts are displayed together with (computer derived) alphanumeric characters. Adjacent to the display is a keyboard and rolling ball module incorporating a four-digit numerical read-out.

The computer system employed for the three-dimensional track-while-scan system
is shown in Fig. 10. It incorporates an Elliott 920M microminiature computer with 16 k word store, computer power supply unit, control and monitor panel, display unit and a paper tape station, comprising an on-line teleprinter, punch, reader and controller with an associated power supply unit.

Acknowledgements

I would like to thank the Admiralty Surface Weapons Establishment and G.E.C. Space and Weapons Systems Limited for the support they have given prior to and during the preparation of the article.

Conferences and Exhibitions

Further details are obtainable from the addresses in parentheses

LONDON

May 5-15
Earls Court
Mechanical Handling Exhibition
(Iliffe Exhibitions, Dorset House, Stamford St., London S.E.1)
May 11-13
Middlesex Hosp. Med. School Television Measuring Techniques
(I.E.R.E., 8-9 Bedford Sq., London W.C.I)

May 11-16
Olympia
Instruments, Electronics \&
Automation Show
(Industrial Exhibitions, 9 Argyll St.,
London W.1)
May 19-21
Savoy Place
Signal Processing Methods for
Radio Telephony
(I.E.E., Savoy Pl., London W.C.2)

EASTBOURNE

May 5-6
Grand Hotel
Instruments in Working Environments:
Design, Specification, Operation
(Mrs. S. Bryant, British Scientific Instrument Research Assoc., South Hill, Chislehurst, Kent BR7 5EH)

MANCHESTER

May 19-22
Belle Vue
ITEX 70: Industrial Training Exhibition
(John Clarke (P.R.) Ltd., St. James House, 44
Brazennose St., Manchester 2)

OVERSEAS

May 4-6
Gaithersburg
Transducer Conference
(H. P. Kalmus, Harry Diamond Labs.,

Dept. of Army, Washington, D.C. 20438) May 7-8

Minneapolis
Circult Theory
(Dept. of Conferences and Institutes, Nolte Center for Continuing Education, University of Minnesota, Minnesota, Minneapolis 55455)
May 11-14 Newport Beach
Microwave Symposium
(R. H. DuHamel, Granger Assoc., 1601

Calif. Ave., Palo Atto, Calif. 94304)
May 13-15
Washington
Electronic Components Conference
(Electronic Industries Association, 2001 Eye St., N.W. Washington, D.C, 20006)
May 18-20 Dayton, Ohio
Aerospace Electronics Conference
(IE.E.E., 124 E. Monument Ave., Dayton, Ohio 45402)
May 25-30 Versailles
IMEKO Measurement Conference
(A.F.C.E.T, Centre Dauphine, Place de Tassigny, Paris 16e)
May 27-June 4
Paris
Mesucora
(Mesucora Secretariat, 40 rue de Colisée. 75 Paris 8e)
May 28-June 1
Basel
Didacta; European Educational Materials
(Schweizer Mustermesse, CH-4000 Basel 21)

BULGIN.
 NEW COMPONENTS ON VIEW AT STAND NUMBER-G. 104

SEND FOR NEW PRODUCTS BROCHURE No 1541/C.
A. F. BULGIN \& CO., LTD, BYE PASS ROAD, BARKING, ESSEX MANUFACTURERS OF ELECTRICAL \& ELECTRONIC COMPONENTS TELEPHONE-01-594 5588 (12 LINES PRIVATE BRANCH EXCHANGE)

The profarsional one

Here it is; Solartron's outstanding 1240.

The multimeter that's not just a toy but a real step forward in instrument technology.

Now everyone can go digitall
You get Amps, Volts, Ohms a.c. and d.c. - down to 100 micro-
volts and dual slope integration for noise rejection.

Technology apart, the 1240 has automatic polarity indication and a straightforward control layout including a single range selector and fingertip function switches. It's the easy-to-handle go-anywhere
portable multimeter.
Go digital with the new 1240 . From Solartron, European leaders in digital instrumentation.

Post the magazine's reply-paid card and we'll send you our data sheet of full details.

The Solartron Electronic Group Ltd Farnborough Hampshire England Telephone 44433

Personalities

Among those recently elected Fellows of the Royal Society are John F. Coales, O.B.E., M.A.(Cantab.), F.I.E.E., F.Inst.P., professor of engineering (control) at the Engineering Department, University of Cambridge, "distinguished for his work on the development of radar, digital computers and on the theory and application of modern control systems for industrial purposes"; Brian D. Josephson, M.A., Ph.D., assistant director of research at the Department of Experimental Physics, Cavendish Laboratory, University of Cambridge, "distinguished for his contributions to the theory of the behaviour of junctions between superconductors, including the discovery of the Josephson effect" (readers may recall Dr. Josephson's article on superconducting devices in our October 1966 issue); and F. Graham Smith, M.A., Ph.D., professor of radio astronomy at the Nuffield Radio Astronomy Laboratories, Jodrell Bank, University of Manchester, "distinguished for his contributions to radio astronomy, and especially for investigations of sources and of the magnetic field of the galaxy."

Percy A. Allaway, chairman of EMI Electronics Lid, has been elected president of the Electronic Engineering Association in succession to Sir Ian Orr-Ewing, Bt., O.B.E., M.A., M.I.E.E. Mr. Allaway, who is 55, joined the Gramophone Company in 1930

Percy A. Allaway
and spent the war years designing equipment for radar and other electronic devices for the Armed Forces. After the war he transferred to the domestic appliance side of EMI. He was appointed general manager of EMI Engineering Development Ltd in 1953 and works director in 1956. When EMI Electronics Ltd was formed to integrate the Group's activities in military electronics and industrial capital equipment, Mr. Allaway was appointed works director becoming managing director in 1961. He was appointed to the board of Electric \& Musical Industries Ltd in 1965, and from 1st July 1969, when EMI formed its U.K. Electronics and Industrial Operations Unit by bringing together EMI Electronics with all its other electronics and industrial operations, he became chairman of EMI Electronics Ltd and deputy chairman of the U.K. Electronics and Industrial Operations.

Data Recognition Ltd, a member of the Unitech group of companies, has announced the appointment of Roy Roper as managing director. He was previously deputy managing director and marketing director of Racal Instruments Lid, which he joined in 1966. Mr. Roper, who is 39 , was a director of Weir Electronics (another Unitech company) before joining Racal.
A. J. Young, C.B.E., B.Sc.Eng.), M.I.E.E., chairman of GEC Electronic Tube Company and managing director of English Electric Valve Company, has in addition been appointed chairman of GEC Semiconduciors Ltd which embraces AEI Semiconductors at Lincoln and Marconi-Elliott Microelectronics at Witham and Glenrothes. Mr. Young, who is 62 , joined the Marconi Company in 1934 as a valve engineer. He was recently appointed chairman of the U.K. Electronic Valve and Semiconductor Manufacturers' Assoc. and chairman of the Electronic Components Board in succession to Dr. F. E. Jones, F.R.S.
G. H. Doust, group managing director of the Plessey Company, has been elected chairman of the
U.K. Radio and Electronic Component Manufacturers' Federation, and succeeds A. J. Young as vice-chairman of the Electronic Components Board.
C. C. McCallum, director, Thorn Radio Valves and Tubes, is the new chairman of the British Radio Valve Manufacturers' A ssociation.
A. J. Brunker, B.Sc.(Eng.), A.C.G.I., D.I.C., F.I.E.E., at one time chief engineer to the Ekco Group and latterly a director of a number of Ekco companies, has retired. During the war Mr. Brunker, who graduated at the City and Guilds Engineering College, was appointed deputy director of radio production in the Ministry of Aircraft Production. In 1947 he joined E. K. Cole Ltd, as general manager of the Export Department and in 1953 was also appointed director and general manager of the newly formed Ekco Electronics Lid. He later became chief engineer to the Ekco Group and in 1966 was appointed to the board of E. K. Cole Ltd, having also become a director of a number of the Ekco group of companies. Mr. Brunker was a council member of the Electronic Engineering Association and founder chairman of its Industrial Electronics Division.

Ivan J. P. James, B.Sc., F.I.E.E. F.I.E.R.E. who has been with EMI since 1937, was recently appointed director-technical, Television Equipment Division of EMI Electronics Ltd,. Hayes. Mr. James

Ivan-J. P. James

has been concerned with the company's development of television equipment for the past twenty years and led the team which designed the 2001 colour television camera. For the past three years he has been general manager of television development and production.
M. W. Blades, who joined Plessey last year from AEI Semiconductors Ltd where he was manager, signal semiconductors, has been appointed general manager of the Plessey Components Group's Microelectronics Division. Mr. Blades joined Edison Swan

Electric Company, Brimsdown, as a graduate apprentice in 1953, and later, when the radio and electronic components department of Edison Swan was merged with other component interests in AEI, became head of product research (semiconductors) for the AEI Valve and Semiconductor Group at Lincols.
J. E. Morley has retired from his position as sales director of Grampian Reproducers Ltd. He joined the company in 1940 as service manager and became sales manager shortly after the war. He was appointed to the board of directors in 1966.

Bob Powell, who joined HewlettPackard as a sales engineer in 1965, and has successively been manager of the analytical group, North European analytical manager and marketing services

Bob Powell
manager at Slough, has been appointed to the new post of electronics sales manager at the company's south Queensferry plant, Scotland. Hewlett-Packard also announces the appointment of Arthur Hendrie as sales promotion manager.
A. Frank Boff, B.Sc., F.I.E.R.E who joined Racal Instruments Lid, as technical director five years ago has resigned "to devote himself to a wider range of interests". He will continue as a consultant to Racal Electronics Ltd. A graduate of London University Mr. Boff, who originated the Boff snap-off diode, went to America in 1950 where he joined Beckman Instruments. He then spent some time in Canada with the Marconi Company on communication system designs. Returning to the U.S.A. he became manager of research and development for the Dymec Division of Hewlett-Packard and from 1960-64 was technical manager of Hewlett-Packard in the U.K. Mr. Boff is succeeded as technical director of Racal Instruments by Keith R. Thrower, M.I.E.R.E. who has been with the Racal group for nine years and two years ago became a director and chief engineer of Racal Instruments Ltd. The company also announces the appointment of J. E. Engledew as marketing director.

Literature Received

For further information on any item include the $W W$ number on the reader reply card

ACTIVE DEVICES

Semiconductor literature available from AEI Semiconductors Ltd, Carholme Rd, Lincoln, gives the vital statistics of microwave devices, signal diodes, reference diodes, rectifier diodes, thyristors and triacs.

AEI quick reference data WW401
Price list WW402
"Valve and Picture Tubes-Data Book, 1970" from Thorn Radio Valves and Tubes Ltd, Publicity Department, 7 Soho Square, London WIV 6DN, gives abridged data and pin connections of Mazda components. It contains an "obsolescent section" giving early warning of valves which will not be manufactured again.

Mazda 1970 data book
WW403
Wall chart; colour TV tube and valve replacement WW404

A wall chart listing Motorola silicon power transistors is available from Celdis Ltd, 37-39 Loverock Rd, Reading RG3 IED

WW405
"Industrial Discrete Devices" is the title of a catalogue from SGS (U.K.) Ltd, Planar House, Walton St, Aylesbury, Bucks, giving data on a wide range of transistors
.WW406
Amendment No. 12 is available for the loose-leaf catalogue issued by Hivac Ltd, Stonefield Way, Ruislip, Middlesex HA4 0JT ..WW407

We have received more literature on the d.t.I./t.t.l. compatible m.o.s. integrated circuits produced by General Instrument Microelectronics, Stonefield Way, South Ruislip, Middlesex.
"An introduction to the Giant family"
WW408
SS-6-1032: Multiple shift registers (1 package contains 2×1-bit, a 2-bit, a 4 -bit, an 8 -bit and a 16 -bit shift register) WWWW409 SL-6-2050/64: dual 50/64-shift register

WW4 10
Two water-cooled thyristors (2WD CR152'03B and 2WD CR7K'03B35), both rated al 700 V . are described in leallets from ALl Semiconductors, Carholme Rd, Lincoln. The first thyristor is rated at 700A and the second at $1,200 \mathrm{~A}$ r.m.s.

WW411

PASSIVE COMPONENTS

The "Electronic Commonent Catalogue-1970" from SASCO, P.O. Box 2000, Crawley, Sussex, lists capacitors, connectors, ferrite components, fuses, lamps and holders, potentiometers, semiconductors, etc

WW425
"Gardners' new catalogue of old transformers" lists obsolescent transformers which are still available or can be manufactured to special order and is published by Gardners Transformers Ltd, Christchurch, Hampshire BH23 3PN

WW426

We have received some literature concerned with ceramic filters from Brush Clevite Co., Ltd., Thornhill. Southampton, SO9 IQX. The first item listed below shows how 455 k H i.f. filters can be made using standard ceramic filters, the 6 dB bandwidth and selectivity being altered by external capacitors.

Identical resonator design tables WW4 427
Bulletin 66006/A, miniature ladder filters WW4 428
Bulletin 66007, ladder filters II W 424
Bulletin 66009 /A, "A guide to the use of piezoelectric ceramic filter elements and ladder filters"

WW430
Bulletin 66021/B, hybrid coil and ceramic resonatorsWW431
"High rejection filter in miniature ladder case for $12.5,25$, and 50 k Hz spacing communications systems" WW432 Bulletin 66042, low-frequency ceramic filters ($9-50 \mathrm{kHZ}$) WW 433 Bulletin 66035. miniature low-cost ceramic filters (i.f.)WW434 Price list WW435

GENERAL INFORMATION

A large wall chart containing tables for converting British and U.S. units of length, area, volume, weight and liquid capacity to metric measure, and vice versa, has been produced by the Babani Finance and Trading Co, Ltd, The Grampians, Western Gate, Shepherds Bush Rd, Londun W.0. Ihe chart costs 7s IId from booksellers.

List No. 171 "UKAEA list of publications available to the public" may be obtained from Atomic Energy Research Establishment, Harwell, Didcot, Berks ...WW458

The Computer Sérvices Bureaux Association (COSBA), Berkeley Square House, Berkeley Square. London WIX 6JU, has available a directory of its members and the services offered by them

WW459
Lloyd's Register of Shipping, Garrett House, Manor Royal, Crawley, Sussex, have published a booklet "List of type-approved instruments and control equipment" for the shipping industry price $£ 1$ including postage.

H. F. Predictions-May


```
Median standard MUF
----- Optimum traffic frequency
```

Since February solar activity has been somewhat higher than predicted by smoothed sunspot numbers so conditions for May are expected to be the same as for 1968 and 1969. Seasonal changes are most striking on routes within the northern hemisphere, the peaks of recent months are depressed giving optimum traffic frequencies (FOTs) below 20 MHz which vary only very little for most of the 24 hours. Daylight FOTs on the trans-equatorial paths continue above 20 MHz and amateur 10 -metre band openings should be possible.

LUF curves are for reception in the UK of point-to-point telegraph services using several kilowatts of power and high-gain aerials. For other services they will be displaced vertically but generally the proximity of FOT and LUF is a measure of difficulty of communication.

New Products

Filters for Marine
 Communications

Anticipating that all new ships will have to comply with the new G.P.O. and European Post and Telegraph Marine Communications Specification from 1972, Cathodeon Crystals have introduced crystals and L / C filters which meet this specification. Double, upper and lower sideband crystal filters are available at a reference frequency of 1.4 MHz . An L / C filter, type BP4805, provides the r.f. selectivity in the 1.6 to 3.8 MHz band. A single sideband filter for A 3 A and A3J transmission meets the specifications for both transmitter and receiver. All filters have the same physical dimensions, $76 \times 27 \times 30.5 \mathrm{~mm}$. The operating temperature range is wider than the specified -10 to $+40^{\circ} \mathrm{C}$. Brief specifications: type BP4704 (A3 and A3H), 6dB bandwidth -3.5 to +1 kHz , insertion loss $<6 \mathrm{~dB}$, terminating impedance $1 \mathrm{k} \Omega / 15 \mathrm{pF}$; type BP4705 (A3A and A3J), 6 dB bandwidth +350 Hz to -2.7 Hz , insertion loss $<6 \mathrm{~dB}$, terminating impedance $1 \mathrm{k} \Omega / 15 \mathrm{pF}$ or 5Ω; type BP4805, 2 dB bandwidth 1.605 to 3.8 MHz , insertion loss $<3 \mathrm{~dB}$, rejection at $1.4 \mathrm{MHz}>70 \mathrm{~dB}$, terminating impedance 200Ω or 50Ω. Cathodeon Crystals Ltd, Linton, Cambridge.
WW 315 for further details

F.M. Signal Generator

An f.m. signal generator, model 188 , manufactured by Measurements, of New Jersey, U.S.A., is available in the U.K. from Wessex Electronics. Two-speed tuning is featured and modulation can be internal or

external. This can be measured in three ranges without the need for an external voltmeter. Frequency range is $86-108 \mathrm{MHz}$ with $\pm 0.5 \%$ accuracy. Output is 0.1 $100,000 \mu \mathrm{~V}$ and modulation 400,1,000 and $10,000 \mathrm{~Hz}$ (internal): Deviation is in three metered ranges of $0-30 \mathrm{kHz}, 0-100 \mathrm{kHz}$ and 0.300 kHz , and deviation response is within 1 dB from d.c. to 75 kHz . Wessex Electronics Ltd, Royal London Buildings, Baldwin Street, Bristol I.

WW 316 for further details

Clutch/Brake Precision Potentiometer

Fairchild Controls have introduced a precision potentiometer incorporating a clutch/brake unit in one complete package. When the potentiometer is de-energized, the rotor-wiper is braked to prevent rotation imparted by shock, acceleration and

vibration. At the same time, the input shaft is free to rotate. With the clutch/brake energized with $24-32 \mathrm{~V}$ dic., the input shaft is coupled to the rotor-wiper to permit adjustment of the potentiometer. The clutch/brake module is easily adaptable to all Fairchild Controls precision potentiometers ranging in size from $\frac{7}{8}$ to 3 in. Fairchild Controls, Seestrasse 233, 8700 Kusnacht, Zurich, Switzerland.
WW320 for further details

TO-3 Packaged Power Amplifiers

A family of hybrid i.c. class-D power amplifiers introduced by TRW Semiconductors Inc. is being marketed by MCP Electronics. The first four type specifications released are designated MCA1001/2 and MCB1001/2. They handle currents up to 10 A from voltage lines up to 40 V . With
appropriate external connections a linear, efficient power control function is obtained. A complementary planar output stage is employed, and the circuits operate from a dual unregulated power supply. Typicai electrical characteristics are: input hysteresis 200 mV ; input offset voltage 100 mV ; thermal resistance $2^{\circ} \mathrm{C} / \mathrm{W}$; switching time MCA series $1.0 \mu \mathrm{~s}, \mathrm{MCB}$ series $0.5 \mu \mathrm{~s}$. Absolute maximum ratings for the MCB1002 include: power stage supply voltage 40 V : continuous d.c. output current 5A: peak output current (25% duty cycle), 10A: and switching frequency 40 kHz . MCP Electrotics Ltd, Station Wharf Works, Alperton, Wembley, Middx. HAO 4PE.
WW321 for further details

Current Monitor

A precision current monitor designed to replace the ammeter in the control of mechanical, electronic, heating and security systems is announced by G \& M Electronics. When the input current

exceeds or falls below the required setting, the monitor provides a signal. It is adjustable and can detect currents of the order of $1-10 \mathrm{~mA}$. Higher currents can be monitored by shunting the input with a precision resistor. For transient input currents, an optional lock-up feature is available, which retains the signal until reset. G \& M Electronics Ltd, 46 Castle Road, Bedford.
WW304 for further details

Wide-range Autobridge

Autobalance universal bridge, type B642, from Wayne Kerr measures an extended range of R, L, C and G values with an accuracy of 0.1%. Two meters respond immediately to changes in the resistive or reactive term of any impedance (including negative resistance) with decade controls available for backing-off to increase the discrimination up to 4 or 5 figures on all ranges. Normal frequency of operation is 10,000 radians $/ \mathrm{sec}(1592 \mathrm{~Hz})$ but the bridge can be balanced manually at any frequency from 200 Hz to 20 kHz using an external source and detector. Analogue outputs are available from both meter circuits. Connectors are also provided for external standards. Sensitivity increases automatically as digits are backed-off; for special
applications, however, operators can select the sensitivity. This allows sudden changes to be accommodated without re-setting the back-off controls. The electronic nulling process is fully operative at all sensitivity levels. Overall measurement ranges are 1 femtofarad $(0.001 \mathrm{pF})$ to 10 farads, 10 picomhos to 100 kilomhos, 1 nanohenry to 10 megahenrys and 10 micro-ohms to 100 gigohms . Two-terminal and threeterminal connections are available on most ranges, with a four-terminal arrangement to overcome lead losses for low impedance measurements. The bridge measures 482 $\times 311 \times 152 \mathrm{~mm}\left(19 \times 12 \frac{1}{4} \times 6 \mathrm{in}\right)$ and weighs 11 kg ($24 \frac{1}{1} \mathrm{lb}$). Wayne Kerr Co. Ltd., New Malden, Surrey.
WW309 for further details

Coils for P.C. Boards

Cambion are now offering a range of shielded variable coils with pins that can be directly soldered to p.c. boards. Six coils in the series $\mathrm{P} / \mathrm{N} 558-7031$, cover an induc-

tance range of $12-120 \mathrm{mH}$. Individually the mean inductance values are $15,22,33,47$, 68 and 100 mH with a variable range of $\pm 20 \%$ from the mean. The coils are vertically tuned and have an operating temperature range of -55 to $+125^{\circ} \mathrm{C}$. Protection from both electrostatic and electromagnetic interference is claimed. Cambion Electronic Products Ltd, Cambion Works, Castleton, near Sheffield.
WW 318 for further details

Colour TV Grey-scale
 Generator

Designed for checking non-linear distortion on colour and monochrome 625 -line television transmission systems a new grey-scale generator, type TF2909, is
announced by Marconi Instruments. It offers a differential gain accuracy of 0.1%, a differential phase accuracy of 0.1° and a wide range of test facilities. When used together with the sine-squared pulse and bar generator TF2905/8 a versatile combination is formed which will perform a major number of tests required on TV transmission systems. For 525 -line systems, version TF2909/1 and TF2905/9 are available. Output waveforms provided are: sawtooth, 5, 7 or 10 riser staircase on every line or on every 4th or 5th line, or full line bar on every line. An internal (crystal controlled) or external sub-carrier can be superimposed on the sawtooth or staircase with a colour burst on every line. Provision is made for an r.f. input of $0.5-6 \mathrm{MHz}$ and the generator can be locked to external pulses to produce a composite video waveform. Marconi Instruments Ltd, Longacres, St. Albans, Herts.
WW 314 for further details

Video Output Transistor

General Electric's (U.S.A.) 300V video output transistor type D40N is now available from Jermyn Industries. This transistor has a continuous rating of 300 V , $6 \mathrm{~W}, 100 \mathrm{~mA}$ and the flat pins can be formed to TO5 or TO66 configurations. It is a silicon n-p-n power type suitable for video and audio output stages and for horizontal sweep drive. Price 15 s each for 100 up wards. Jermyn Industries, Vestry Estate, Sevenoaks, Kent.
WW 315 for further details

Marine V.H.F. Radio-telephone

Cossor Electronics have announced a new solid-state 28 -channel v.h.f. radio-telephone designed to meet international maritime specifications for ship-to-ship and ship-toshore communications. It is designated type CC.414.ME28. Simplex and duplex operation is provided on the 50 kHz channels 1 to 28 (maritime band) and the set can be easily modified to meet future 25 kHz channel separation requirements. A dual watch facility is incorporated as standard and local control can be provided as an optional extra. Operation is stable over a wide range of battery voltages and protec-

tion is given against reverse polarity. The transmitter output is 20 W and the receiver audio output 3 W to a built-in loudspeaker. Power supply is a nominal 24 V d.c. and a range of converters is available for operation from any a.c. or d.c. ships' mains. Transceiver and extended control unit can be bulkhead mounted. Cossor Electronics Ltd, The Pinnacles, Elizabeth Way, Harlow, Essex.
WW 312 for further details

I.C. Mounting Cards

Dualine i.c.-cards available from Shirehall Electronics, are intended for mounting and interconnecting dual-in-line packages (up to 16-way), for development or test application. Two card sizes are available: DL $109(95 \mathrm{~mm} \times 94 \mathrm{~mm})$, which will accept 9 i.cs and DL $110(95 \mathrm{~mm} \times 152 \mathrm{~mm})$, for 15 i.cs-each with 22 gold-plated edge contacts. Each size is also available with double-sided contacts (44-way), designated DL 109/44 and DL 110/44. The board is s.r.b.p. with roller-tinned copper conductors, and supplied drilled ready to accept d.i.ps or i.c.-sockets. Supply lines are adjacent to all i.c. locations, which have 3 -hole pads for ease of connection. Also provided are plain holes for terminal-pin into connection of circuit networks. These cards are part of the Dualine " 100 " series and fit any of the standard range of hous-ings-pack, box, rack or case. The price range is 14 s to 21 s . Shirehall Electronics Ltd, Borough Green, Sevenoaks, Kent. WW328 for further details

High-frequency Video Amps

Voltage gain of 20 dB at 100 MHz , five nanoseconds rise and fall times, and fixed or variable gain are features of a new group of monolithic video amplifiers being

WW250 for further details

7504

JLS
" sweep, "B" sweep, endently. A singlegmatism adjustment, sompleie the control

CALIBRATOR

A multi-function generator usable as a "standard" for calibration of voltage and current GAIN, time/div, and probe compensation. The output is $D C$ or $A C$ (1 kHz or variable) voltage or current (fixed at 40 mA). The amplitude accuracy is within 1% and the time accuracy is within 0.5% at 1 kHz .

TRIGGERING

The signals from both vertical plugins are coupled through a mainframe logic circuit and made available to each horizorital plug-in, selectable from LEFT channel, RIGHT channel, or slaved to VERTICAL MODE. The latter frees the operator from manual source changes during single-trace operation and, in conjunction with the P-P AUTO TRIGGER MODE in the time-base units, provides true hands-off triggering during routine measurements.

FOUR PLUG-IN CHANNELS

The modular approach is the answer to instrument flexibility. With dualtrace switching in the mainframe amplifiers, each plug-in can be "specialized" in function and operate in combination with other units. Thirteen plug-ins are currently available for the 7000 -Series. Together, they represent the widest range of performance options for multi-trace, differential and sampling applications available today.
mpififier 2.4ns it) in the) in the 7504. Ilv at full band-

7 A22 High-Gain

 Differential AmplifierBandwidth-DC to 1 MHz with selectable upper and lower -3 dB points. Min deflection factor- $10 \mu \mathrm{~V} /$ div at full bandwidth.

7B51/7B50

Time-Base Units for the 7504
$5 \mathrm{~ns} /$ div maximum sweep speed. Operable singly or in combination for delaylng sweep capability.

7M11 Delay Line

Unit

Two 75 ns, $50-9$ delay lines. Trigger selection from either line.

7S11 Sampling Amplifier

Accepts the plug-in sampling heads for bandwidths to 14 GHz (25 ps tr).
$7 T 11$ Random Sampling Time Base $10 \mathrm{ps} / \mathrm{div}$ to $5 \mathrm{~ms} / \mathrm{div}$ sweep range, accom plished with equivalent-time and real-time techniques

Triggering to 12 GHz

7000 SERIES

Plug-In Oscilloscopes

150 MHz Bandwidth

USABLE performance to 150 MHz or 90 MHz . Combined mainframe and plug-in bandwidths are specified at minimum deflection factors with or without probes. With . . .

MORE Sen

 widths than ever before. 5 $\mathrm{mV} / \mathrm{div}$ at $150 \mathrm{MHz}, 1 \mathrm{mV} / \mathrm{div}$ at 100 MHz and $10 \mu \mathrm{~V} / \mathrm{div}$ at 1 MHz . With . . .
MORE Flex

Each mainframe accepts up to four plug-in units. Thirteen plug-ins are currently available to cover virtually all multi-trace, differential, sampling, and $X-Y$ applications. Plus . . .

NEW Conveniënce -

Greater convenience in all areas of instrument operation. Features such as Auto Scale Factor Readout, lighted pushbutton switching, and true automatic triggering assure faster, more accurate, less complicated measurements.

7704

aUto scale factor readout

A character generator senses the position of volts/ div, amps/div, time/div, polarity, and uncalibrated variable controls, then accounts for probe attenuation and displays the correct scale factors for all channels directly on the CRT.

DISPLAY CONTF
Three intensity controls adjust " A and READOUT brightness indel focus control, a screwdriver ast and a two-position beam finder group.

BRIGHT TRACE

The acceleration potentials are 24 kV for the 7704 and 18 kV for the 7504 for improved trace visibility. Single-shot photographic writing speed is $3300 \mathrm{~cm} / \mu \mathrm{s}$ (7704) measured with the standard P31 phosphor, the new C-51 camera and 10,000 ASA film. The display area is $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ with a parallaxfree illuminated graticule.

DUAL-TRACE SWITCHING

Both the vertical and horizontal mainframe amplifiers are "dual trace" providing a unique level of flexibility with plug-in combinations. A relatively small number of plug-ins can then meet a wide range of application requirements. The CHOP and ALT modes permit simultaneous displays of delaying and delayed sweep, and, through switching logic, may be "slaved" to provide a functional dual-beam type of display.

7 A13 Differential Comparator Amplifier Bandwidth-DC io 100 MHz (3.5 ns if) in the 7704; DC to $75 \mathrm{MHz}(4.7 \mathrm{~ns} \mathrm{1r)}$ in the 7504. Min deflection factor- $1 \mathrm{mV} / \mathrm{dlv}$ at full bandwidth.

7 A16 Wide-Band A-Bandwic:h-DC to 150 MHz I 7704; DC to $90 \mathrm{MHz}(3.9 \mathrm{~ns} \mathrm{ti}$ Min deflection factor- $5 \mathrm{mV} / \mathrm{c}$ widtn.

7A11 Captive FET Probe Amplifier Bandwidth-DC to $150 \mathrm{MHz}(2.4 \mathrm{~ns}$ tr) in the 7704; DC to $90 \mathrm{MHz}(3.9 \mathrm{~ns} \mathrm{tr})$ in the 7504. Min deflection factor $-5 \mathrm{mV} /$ div at full bandwidth.

7 A12 Dual-Channel Amplifier Bandwidth—OC to 105 MHz (3.4 ns tr) in the 7704; DC to $75 \mathrm{MHz}(4.7 \mathrm{~ns} \mathrm{tr})$ in the 7504. Min deflection factor- 5 mV /div at full bandwidth.

7 A14 AC Current

 Probe Amplifier Bandwidth- 25 Hz to 105 MHz depending on mainframe and current probe; two probes available. Min deflection factor- $1 \mathrm{~mA} /$ div at full bandwidth.

1

The cameras offer a new level of operational convenience for mistake-proof trace photography. The guess work normally associated with selection of f stop and shutter speed to match the ASA index and trace brightness is eliminated. After setting the ASA index, the built-in photometer allows a visual correlation of trace intensity to the correct I stop setting and shutter speed. After initial adjustment, a change of iftop or shutter speed will still maintain the same exposure. Focusing is accomplished by two beams of light projected on the CRT which, when superimposed, indicates optimum focus. The insert shows the photometer spot and the rangefinder focusing images.

Two new compact trace-recording cameras have been designed for direct compatibility with the 7000 -Series Oscilloscopes. The C-51 and C-50 cameras are basically identical units, differing only in the lens system. The C-51 has an $\mathrm{f} / 1.2,1: 0.5$ lens; the $\mathrm{C}-50$ uses an $\mathrm{f} / 1.9,1: 0.7$ lens. The C-51 is recommended for single-shot photography at the fastest sweep rates, the C-50 for more general purpose applications. Photographic writing speed of the two 7000-Series mainframes with the C-51 and 10,000 ASA film (without prefogging) is $3300 \mathrm{~cm} / \mu \mathrm{s}$ (7704) and 2500 $\mathrm{cm} / \mu \mathrm{s}$ (7504).

SCOPE-MOBILE ${ }^{\text {® }}$ CARTS

The 204-2 Scope-Mobile (1) Cart is specifically designed for the 7000Series instruments. It provides a securing mechanism for the oscilloscope, nine positions of selectable tray tilt, a large storage drawer, storage for five 7000-Series plug-ins, and large locking-type wheels.

PROBES

The P6053 is a miniature fast-rise 10X probe designed for full compatibility with the 7000 -Series instruments. Input R and C is $10 \mathrm{M} \Omega$, 10.3 pF . Probe risetime is 1.2 ns or less.
The P6052 is a passive dual-attenuation probe designed for measurements below 30 MHz . A sliding collar selects 1 X or 10 X attenuation. Input R and C is $1 \mathrm{M} \Omega$ or $10 \mathrm{M} \Omega$, 100 pF or 13 pF . Risetimes are 60 ns (1X) and 7 ns (10X).

[^18]
Tektromix U. K. Ltd Beaverton House, P. O. Box 69, Harpenden, Herts. Telephone Harpenden 61251. Telex: 25559

 For overseas enquiries: Australia: Tektronix Australia Piy. Lid., 4-14, Foster Street, Sydney, N.S.W. Canada: Tektronix Canada Lid., Montreal, Toronto \& Vancouver. France: Relations Techniques Intercontinentales, S.A., 91. Orsay, Z.I. Courtaboeuf, Route de Villejust (Boite Postale 13). Switzerland: Tektronix International A.G., P.O. Box 57, Zug, Switzerland. Rest of Europe and the Middle East: Tektronix Lid., P.O. Box 36, St. Peter Port, Guernsey, C.I. All other territories: Tektronix Inc., P.O. Box 500, Beaverton, Oregon. U.S.A.introduced by Silicon General (U.S.A.). Requiring only 100 mW of power at 12 V the series 401 high-frequency video amplifiers also offers single-supply operation and symmetrical limiting. Internal emitter followers are used to achieve high input and low output impedances, allowing simple capacitor coupling. Biasing and gain-setting resistors are internally diffused, eliminating external resistor networks. The gain may be

externally varied through the use of a.g.c. diodes which are included in the circuit. These devices are designed to provide maximum versatility as general purpose, single-ended amplifiers. Typical applications include use as i.f. and r.f. amplifiers, symmetrical non-saturating limiters, oscillators, low-level audio stages and for automatic gain control and pulse amplification. The SG 1401 operates over the temperature range -55° to $+125^{\circ} \mathrm{C}$ while the SG2401 and SG3401 are designed for 0° to $+70^{\circ} \mathrm{C}$. Various packages are available. Price: (1000 pieces) $\$ 1.10$ to $\$ 2.25$ depending on temperature range. Silicon General, Inc., 7382 Bolsa Avenue, Westminster. California 92683, U.S.A.
WW301 for further details

Presettable Counters

Built-in facilities for programme presetting are a feature of a range of bi-directional or reversible counters. Series III, introduced by Industrial Numerical Controls. This enables an external function to be operated at a preset count by means of an internal relay rated at 250 a.c., 7.5 A . the basic counter has an input sensitivity from
$100 \mathrm{mV} \mathrm{pk}-\mathrm{pk}$ to 250 V r.m.s., a frequency range of d.c. to 50 kHz , and a 15.5 mm numerical tube display with plus, minus and decimal point indication. Each counter incorporates two input sockets A and B. Three standard inputs are available: (1) input to A adds, input to B subtracts, (2) input A counts, input to B determines whether count is add or subtract, (3) inputs A and B are two sineor square-wave signals 90° out of phase. Voltage supplies are provided for energizing external transducers. Temperature range of the Series III is $0-60^{\circ} \mathrm{C}$ and the case size is $450 \times 240 \times 110 \mathrm{~mm}$. Operation can be from 110 or 240 V 5060 Hz supplies. Industrial Numerical Controls Ltd, P.O. box 8, Portland Street, Accrington, Lancs.
WW $\mathbf{3 0 6}$ for further details

Contactless Signal Couplers

The first in a range of contactless signal couplers based on gallium arsenide emitters and light-to-current convertors contained in a single device, is announced by MCP Electronics. Type ISC52 is a highsensitivity, medium-speed, low-voltage device primarily intended for d.c. insulated connections in telephone terminals and computer peripherals. Input and output are insulated from each other, electrically, therefore no loading effects are felt at the input when circuit conditions change at the output. Bandwidth covers many more octaves than transformers, starting at genuine d.c. Thus in digital applications no d.c. restoration is necessary. With the ISC52 a typical input necessary to produce a "useful" output is 7.5 mA . Recommended supply voltage is 3 V and typical rise time $10 \mu \mathrm{sec}(4 \mu \mathrm{sec}$ in a special version). Fan out is 3. In digital applications, four modes of operation are possible: voltage in/voltage out, voltage in/current out, current in/ voltage out, and current in/current out. Input/output insulation will withstand several hundred volts. The pin pattern is spaced at 2.54 mm pitch. MCP Electronics Ltd, Alperton, Wembley HAO 4PE.
WW 313 for further details

Stabilized Power Supplies

ITT Components Group have introduced an extension to their existing range of stabilized power supplies. The new MP range is designed to provide high quality sub-units at low cost for incorporation

into customers' own equipment. It is available in output d.c. current ratings of $0.5,1,2,3,5$ and 10 A and each current rating may be specified in stabilized output voltage ranges of $0-16,30$ and 50 V . Two versions of each unit are offered: industrial, to meet most normal industrial requirements, and professional where severe performance parameters are demanded. Basic power supply is identical in both versions but voltage stability in the professional model is achieved with a monolithic i.c. Stability ratio of the industrial version is $1000: 1$ above 6 V output and $250: 1$ below, compared with 10.000:1 at all levels for the professional version. Ripple is $500 \mu \mathrm{~V}$ and $200 \mu \mathrm{~V}$ respectively. Output current is automatically reduced when a fault occurs, and it returns to normal when the fault is rectified. ITT Components Group Europe, Rectifier Product Division, Edinburgh Way, Harlow, Essex.
WW302 for further details

N-Channel GaAs Transistor

An n-channel gallium arsenide field effect transistor, type GAT1, particularly suitable for u.h.f. low-noise amplifier applications, is being produced by Plessey. It has high transconductance-typically 6 mmhos at 900 MHz , and low input and feedback capacitances (around 1 pF and 0.15 pF respectively). Housed in a four-lead TO-18 package, the device operates up to 1.5 GHz , and offers low noise characteristics, typically 3.5 dB at this frequency. Common source power gain is a minimum of 10 dB at 1 GHz . Power supply requirements are 5 V for the source-drain, and up to 12 V for the gate. Plessey Components Group, Microelectronics Division, Optoelectronic and Microwave Unit, Wood Burcote Way, Towcester, Northants NN 127 JN .
WW326 for further details

Video Delay Lines

Matthey Printed Products announce a new range of Silver Star video delay lines for 625-, 525- or 405-line colour television
transmission, designed jointly with the B.B.C. Three small fixed modules replace bulky delay cable and equalizer circuits and provide $75-\mu$ delays of 200 and 500 ns and $1 \mu \mathrm{~s}$. Built in equalizers give insertion loss/frequency response of $0.7 \mathrm{~dB}, \quad 1.5 \mathrm{~dB}$ and $2.6 \mathrm{~dB} \pm 0.1 \mathrm{~dB}$ respectively up to 5.5 MHz . The modules simply plug in and no adjustment is necessary. Data sheets are available on request. Matthey Printed Products Ltd, William Clowes Street, Burslem, Stoke-on-Trent.
WW305 for further details

Field Strength Meter

G.P.O. Radio Receiver type 35 A , available from Microwave International, is a portable transistorized field-strength meter used for the measurement of radiated field strength and conducted voltages in the v.h.f. frequency range $34-225 \mathrm{MHz}$. The receiver is powered by three 8.4 V dry batteries. A dipole aerial with adjustable telescopic elements is used for the measurement of field strengths. The output meter is scaled to read microvolts or dB relative to $1 \mu \mathrm{~V}$. The dynamic range of the meter is

from $10-100 \mu \mathrm{~V}$ and $0-40 \mathrm{~dB}$ relative to $1 \mu \mathrm{~V}$. Two 20 dB attenuators and one at 10 dB are provided. These may be switched into the i.f. amplifier permitting voltages up to 90 dB above $1 \mu \mathrm{~V}$ to be measured. A standard jack socket is provided on the front of the receiver enabling an operator to listen to the transmitted signal via an audio amplifier. The case is fitted with shoulder straps and carrying handie. Microwave International (U.K.) Ltd, 33-37 Cowleaze Road, Kingston-upon-Thames, Surrey.
WW327 for further details

I.C. Audio Amplifier

Designed for use in consumer products such as radio and TV receivers and for industrial applications such as servo amplifiers, the $3-W$ audio amplifier, type M5 102 Y , from U.E.C.L. is available in a 10-lead TO3 type package. The function of the device is that of a driver and power

amplifier. Sensitivity is 50 mW for 3 W output and voltage gain 37 dB . Other characteristics are: input resistance $7 \mathrm{k} \Omega$, output resistance 0.2Ω, bandwidth 50 Hz to 70 kHz and distortion $<0.2 \%$. With a supply voltage of 13.2 V (nominal 12 V car supply), it is capable of delivering up to 2 W output power without a fin or 3 W with the incorporation of a fin. This device can be obtained on a cash-with-order basis at $£ 2$ 2s (including post). Ultra Electronics (Components) Ltd, Microelectronics Division, 35-37 Park Royal Road, London N.W. 10 .

WW329 for further details

High-power Op. Amp.

Originally designed for work with the Australian Electricity Board, the Ancom $15 \mathrm{~A}-1 \mathrm{~b}$ high-power op. amp. is now available as a standard production item. It has an output of $\pm 10 \mathrm{~V}$ at $\pm 10 \mathrm{~mA}$ and a typical open loop gain of 36,000 . Frequency response is 2 MHz at small signal unity gain, and offset voltage and current are $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and 6 nA (differential input). The module, which occupies only $12.3 \mathrm{~cm}^{3}$, is fully protected against overload. Ancom Ltd, Devonshire Street, Cheltenham, GL50 3LT.
WW320 for further details

Tunable Filter

A twin-channel tunable filter, type VBF/l comprising two fourth-order Butterworth filters which can be each used in the high-pass or low-pass configuration, has been announced by KEMO. Each section has a cut-off rate of 24 dB /octave. The channels can be used in series or parallel to produce a bandpass or band reject response. Alternatively with both units

switched to high- or low-pass function a cut-off of 48 dB /octave can be achieved. The voltage gain is unity while channel 1 has additional amplification of $\times 3, \times 10$, $\times 30$ and $\times 100$. Input impedance is $100 \mathrm{k} \Omega$ and output impedance 50Ω. The instrument is continuously variable from 1 Hz to 100 kHz using five switched-in decade ranges. The noise level referred to input is $5 \mu \mathrm{~V}$. Price of the VBF/1 is $£ 250$; dimensions $254 \times 140 \times 190 \mathrm{~mm}$. KEMO (Consultants) Ltd, 42 Chancery Lane, Beckenham, Kent.
WW303 for further details

10-turn Potentiometers

Precision 10-turn potentiometers with 0.2% linearity in less than 1 cubic inch have been introduced in the U.K. by GDS (Sales). These potentiometers, the Fairchild MF-78 series, are available in nine standard resistance values from 500Ω to $125 \mathrm{k} \Omega$ with 3% tolerance. Rating is 2 W at $40^{\circ} \mathrm{C}$ and resolution is

from $0.007 \%(125 \mathrm{k} \Omega)$ to 0.033% (500Ω). It is claimed that the wiper carriage and drive will withstand severe shock and vibration without deterioration in performance. Cost of the MF-78
potentiometers is 98 s 6 d (quantity 1-9). GDS (Sales) Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks
WW308 for further details

Logarithmic Amplifier

A wideband logarithmic amplifier, type WLA 125 , has been announced by AIM. It is a 100 mm module designed for fields where exponential functions occur or where dynamic range may be unknown. The amplifier has a range of 60 dB for a.c. and d.c. signals in a voltage mode, and 40 dB for d.c. signals in a current mode. Three input

a.c. and d.c. voltage ranges are provided, giving coverage from 1 mV to 100 V , and a current range from $10 \mu \mathrm{~A}$ to 1 mA . Output is a proportional d.c. voltage of $50 \mathrm{mV} / \mathrm{dB}$ via a front panel socket. There is also a built-in meter with an accuracy of 0.3 dB at f.s.d. Frequency range is from 5 Hz to 3 kHz on the 1 V range or 5 Hz to 300 kHz on the 100 V range. The unit is driven by AIM PSU 101 power supply module. The addition of a frequency-to-voltage convertor, FVC 250 A , makes the logarithmic amplifier suitable for the measurement of frequency dependent variables. Price $£ 220$. AIM Marketing Division, The River Mill, St. Ives, Huntingdon.
WW 317 for further details

Digital Multimeter

Dana Electronics have introduced a digital multimeter, type 5500, which will provide $1 \mu \mathcal{N}$ d.c. resolution and additionally can give a.c. voltage, ohms and ratio readings. All readings are remotely programmable. Three models are available: the $5500 / 112$, a d.c.-only unit, the $5500 / 130$ and $5500 / 135$, basically d.c. units which can be modified by plug-in cards to add either a meansensing a.c. convertor or a computing r.m.s. a.c. convertor. An ohms convertor can be added to the computing convertor. The 5500 is a five-digit instrument, with six-digit over-range giving a d.c. accuracy

of $\pm 0.005 \%$ plus one digit. Input resis tance is $10,000 \mathrm{M} \Omega$. The computing r.m.s. convertor provides true r.m.s. readings up to $3: 1$ crest factor and the resistance measurement option for model 135 gives f.s.d.s of $10,100,1,000 \Omega$ and 10 , $100,1,000$ and $10,000 \mathrm{k} \Omega$ with a resolution of $100 \mu \Omega$. Model 135 is fitted with an analogue output facility permitting direct driving of external devices. Outer case measurements are 430 mm wide $(482 \mathrm{~mm}$ for rack mounting) by 95 mm high and 445 mm deep. Prices around $£ 1,350$. Dana Electronics Ltd, Bilton Way, Dallow Road, Luton, Beds.
WW 311 for further details

Portable Sound System

A p.a. system and radio microphone receiver combined with a loudspeaker in one transportable unit is being offered by Reslosound. An amplifier with an output of 10 W and a frequency response of 50 Hz to 10 kHz $\pm 3 \mathrm{~dB}$ is used, and there are three low-

impedance microphone inputs. Controls include separate bass and treble cut and boost. The radio microphone receiver incorporated is a standard unit working at 174.8 MHz . It is complete with a 430 mm telescopic aerial and a coaxial aerial socket. The loudspeaker enclosure contains three 200 mm cone units. Additional loudspeaker systems can be connected where required and alternative signal sources can be fed into the amplifier. This unit, designated ISR/10, can be used in conjunction with any Reslo Audac transmitter. It measures $855 \times 305 \times 230 \mathrm{~mm}$ and weighs 13.5 kg . Reslosound Ltd, Romford, Essex.
WW 319 for further details

Switching m.o.s.f.e.ts with low On-Resistance

Two p-channel m.o.s.f.e.ts, 3N167 and 3N168, from Siliconix have built-in zener diodes between gate and body to eliminate static-charge accumulation on the gate (a potential source of oxide breakdown). Drain/source, gate/source and gate/drain breakdown voltages are $30 \mathrm{~V}(3 \mathrm{~N} 167)$ and 25 V (3 N 168); threshold voltage is 6 V maximum. On resistances $r_{d s(o n)}$ are 20 and 40Ω maximum respectively for the 3 N 167 and 3 N168; drain or source cut-off current $I_{\text {dss }}$ is less than 0.5 nA and 1 nA respectively. The encapsulation is TO-72. Siliconix Limited, Saunders Way, Sketty, Swansea. WW324 for further details

Fast Thyristor Family

A new family of fast-switching thyristors announced by Mullard is intended for pulse modulation in radar equipment. The thyristors, which comprise the BTX95 series and have SO-35A encapsulation, can switch peak powers of up to 150 kW at 5 kHz . Voltage ratings are from 500 to 800 V . They have a low forward voltage drop during conduction and a $d I / d t$ rating of 1000A/us. Mullard Lid, Mullard House, Torrington Place, London W.C. 1.
WW322 for further details

Correction

In last month's issue, p.196, the new audio transformers by Gardners have a $2,000 \mathrm{~V}$ capability, not $20,000 \mathrm{~V}$ as stated. They come in three basic sizes, not two.

Real and Imaginary

by "Vector" (with apologies to Longfellow)

Electronic totem

Where the turgid Thames drifts slowly Slowly, slowly ever seaward To the oil-slicked North Sea water Past the Big Smoke tranquil rising From the lodges of the Koknees In the land of Owsyerfarver, Dwell the tribesmen of West-minster
Loafing in their hot-air wigwams
-House of Lords and House of Commons-
Making laws for all the nation
(Except when on the beach at Capri)
Driving all the common people
Up the creek without a paddle.

There the bigger smoke drifts heavenward
From the pipe of Aroldwilson
A roldwilson, chief of chieftains
Overlord of all trade unions
Father of the Labour party
Patron saint of all the Scillies, Wily, crafty Aroldwilson Smokes the calumet, the peace-pipe Planning strategy and tactics For the General Election. See the puffs of smoke arising In a simple on-and-off code Summoning the beavers to him -All those not-so-eager beavers Chiefs of all the Civil ServiceFrom their lodges hard by Whitehall. See Ahmeek the King of Beavers (Wedgewood Benn in paleface language) Wedgewood Benn the King of MinTech
Sitting in his lodge in Whitehall
Amid the clatter of the tea-cups
Awaiting word from Aroldwilson.

See the blue-grey smoke arising From the tenth tepee at Downing
"Come at once, O King of Beavers Remove the Pb ! do not dally Or my tomahawk may chop thee" -Thus the message in the smoke-rings From the pipe of Aroldwilson From the chief of all the chieftains.

In the tenth tepee at Downing

In the lodge of Aroldwilson
Sits Eye-Bee-Em the great computer -Eye-Bee-Em the magic maker From the land across the water Bought with many bales of wampum

All the fortunes of his party In the General Election In the choosing by the people Of their true accepted leader. Will they root for Aroldwilson? Or for Edward the Digressor?
(Full of blandishments and pleadings For a chance to prove his mettle.)
"Welcome in, O faithful Wedgewood
Welcome in, my dear old china!"
Thus the voice of Aroldwilson
As he stands beside the lodge-pole
Of the tenth tepee at Downing
While Eye-Bee-Em the great computer Crouches monstrous in the background Winking evil eyes of neon
Muttering incantations darkly.
"Bend thy head O Chief of MinTech"
(Thus Aroldwilson, sotto voce)
"Let me whisper in thy ear-hole
Lest Eye-Bee-Em should overhear me
For I fear this Yankee monster Which thou didst connive to get me On the never-never system.
List, O Wedgewood and I'll tell thee Reasons for my dark forebodings
About this diabolical computer
And, when I have done the telling,
Thou must be the judge of whether
I am round the twist of reason."

Thus the voice of Aroldwilson In the ear of trusty Wedgewood "Know you, O my Chief of MinTech That I, when more than apprehensive Of our fate in the Election
Have, at divers times and often
Turned to Eye-Bee-Em for solace
Feeding him with signs and portents
Trends and tendencies together!
All the data I have gathered Into appetising programs
That Eye-Bee-Em may work his wonders
And tell us plainly of the future
Who will win the next election.
But alas! I fear that gremlins
Are having fun with his internals
With L.S.D. his memory filling
Giving him hallucinations
For, no matter how he's programmed
His print-out message never varies
-Always 'The Star-Spangled Banner'
Every verse and every chorus-
While upon his cathode-ray tube
Appears the picture of a wasteland
Charred and blackened tree-stumps lying

Upon a plain of ling and heather.
-Tell me, Wedgewood, tell me truly
Are we harbouring a nut-case
Within the walls of this computer?"

At these words the face of Wedgewood
-Wedgewood Benn the Chief of MinTech-
Turns as pale as any spectre's
" Tis a curse!" he mutters weakly
"T Tis the curse of Little Neddy!
They have wished this ill upon us Because we bought a Yank computer
They have tampered with its innards
Rigged the print-out to remind us
Of its foreign antecedents
Every time we seek to use it."
"-But the picture?" Aroldwilson
Quavers as his peace-pipe
Shatters in a hundred fragments
On the wigwam's floor before them.
"Why the wasteland, bleak and sombre Why the desolated landscape?"
Wedgewood's face is grim and tortured
As he answers Aroldwilson
"'Tis an omen! 'tis a symbol!
'Tis a dreadful allegory
Of the General Election.
'The blasted Heath' is plain its message Written in the beam's electrons
Of the cathode-ray display tube!"

Still the bigger smoke drifts heavenward From the pipe of Aroldwilson
(Stand-in for the fractured favourite)
Aroldwilson, chief of chieftains
Planning strategy and tactics
How to win the wayward voters
Of electronics engineering
How to placate Little Neddy
(Free research for every member?
Green stamps with every MinTech contract?
Banish every Yank competitor?)
Aroldwilson, chief of chieftains
Feeding all the trends and portents
To a British-made computer
Obtaining now much cheerier answers
(At least he does when it is working).

So at last we leave our hero Overlord of all trade unions Father of the Labour party Dispensing cheer to all his cohorts Via a British-made computer (And, of course, those daily columns Disclosing what the stars foretell us)
"Vector" has pointed out that a printer's gremlin sabotaged a sentence in his March contribution. The sentence in question, in the middle column, should have read "John's definition of high-quality reproduction was a big bad woof in the bass register . . ." not "big bad wolf"!

SINCLAIR IC-10

MONOLITHIC INTEGRATED CIRCUIT AMPLIFIER AND PRE-AMP

A 13 transistor circuit measuring only one twentieth of an inch square by one hundredth of an inch thick!

the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick, has 5 watts R.M.S. output (10 w . peak). It contains 13 transistors (including two power types), 2 diodes. 1 zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier. it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout), etc. Once proven, the circuits can be produced with complete uniformity which enables us to give a full guarantee on every IC-10, knowing that every unit will work as perfectly as the original and do so for a lifetime.

SPECIFICATIONS

Output:

10 Watts peak. 5 Watts R.M.S. continuous Frequency response: Total harmonic distortion: 5 Hz to $100 \mathrm{KHz} \pm 1 \mathrm{~dB}$ Total harmonic distortion: Less than 1% at full output. Load impedance: Power gain: Supply voltage: Size:
Sensitivity:
Input impedance:
$110 \mathrm{~dB}(100.000 .000 .000$ times) total. 8 to 18 volts.
$1 \times 0.4 \times 0.2$ inches.
5 mV .
Adjustable externally up to 2.5 M ohms.

CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class $A B$ output is used with closely controlled quiescent current which is independent of temperature. Generous negative teedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a Jarge number of applications in addition to high fidelity. These include stabilised power supplies, oscillators. etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

SINCLAIR

Project 60

 an exciting alternativeIt is not likely that anyone purchasing an amplifier today would have difficulty in finding one that met all his requirements, although the price might not be as low as could be wished. But one's needs can change, also the technically correct amplifier may be physically inconvenient. If there is an amplifier available, of the right size and price, to meet all your needs for the foreseeable future, then that is your best buy. If not, we offer a possibility which we believe to be an exciting alternative approach. That alternative is Project 60.

Project 60 now comprises a range of modules which connect together simply to form a complete stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the world can compare in overall performance. Now with the addition of three new modules to the range, the constructor has choice of assemblies with either 20 or 40 watts output per channel, with or without filter facilities.
The modules now are: 1. The $Z .30$ and $Z .50$ high gain power amplifiers, each of which is an immensely flexible unit in its own right. 2. The Stereo 60 preamplifier and control unit. 3. The Active Filter unit with both high and low audio frequency cut - offs. 4. The PZ. 5 and PZ. 6 power supplies. A complete system could comprise, for example, two Z.30's one Stereo-60, and a PZ.5. The PZ. 6 is stabilised and should be used where the highest possible continuous
sine wave rating is required. An A.F.U. may be added later. In a normal domestic application, there will be no significant difference between using PZ. 5 or PZ. 6 uniless loudspeakers of very low efficiency are being used, in which case the PZ. 6 will be required. For assemblies using two Z.50's there is the new PZ. 8 supply unit to ensure maximum performance from these amplifiers.
All you need to assemble your Project 60 system is a screwdriver and soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly. Project 60 modules have been carefully designed to fit into virtually all modern plinth or cabinets and only holes need be drilled into the wood of the plinth to mount the control unit. Any slight slip here will be covered by the aluminium front panel of the Stereo 60. The Project 60 manual gives all the buildings and operating instructions you can possibly want, clearly and concisely. Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future as the latest additions to the range show. A stereo F.M. tuner is next to come. These and all other modules we introduce will be compatible with those already available and may be added to your system at any time. And because Sinclair are the largest producers of constructor modules in Europe, Project 60 prices are remarkably low.

z-30 TWENTY WATT R.M.S. (40 WATT PEAK) POWER AMPLIFIER

The Z-30 is a complete power amplifier of very advanced design employing 9 silicon epitaxial planar transistors. Total harmonic distortion is incredibly low being only 0.02% at full output and all lower outputs. As far as we know, no other high fidelity amplifier made can match this specification, no matter what the price. Thus you can be utterly certain that your Project 60 system will do full justice to your other equipment however good it may be. The Z-30 is unique in that it will operate perfectly, without adjustment, from any power supply from 8 to 35 volts. It also has sufficient gain to operate directly from a crystal pickup. So in addition to its use in a high fidelity system you can use a Z-30 to advantage in your car or a battery operated gramophone for your children, for example. These, and many other applications of the Z-30, are covered in the Project 60 manual.

SPECIFICATIONS

Power output- 15 watts R.M.S. (30 watts peak) into 8 ohms using a 35 volt supply: 20 watts R.M.S. (40 watts peak) into 3 ohms using a 30 volt supply.

Output-Class AB.
Frequency response: 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
Signal to noise ratio: better than 70 dB unweighted
Distortion: $\quad 0.02 \%$ total harmonic distortion at full output into 8 ohms and at all lower out out levels.
Size: $\quad 3 \ddagger \times 2 \neq \times \ddagger$ inches.
Input sensithvity: $\quad 250 \mathrm{mV}$ Into 100 Kohms
Damping Factor: 500
Loudspeaker impedances $\mathbf{3}$ to 15 ohms
Power requirements: 8 to 35 V.d.c.

STEREO 60 PREAMPLIFIER AND STEREO OO CONTROL UNIT

The Stereo 60 is a stereo preamplifier and control unit designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout and great attention has been paid to achieving a really high signal-to-noise ratio and excellent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for all the usual inputs. The tone controls are also very carefully designed and tested.

SPECIFICATIONS

- Input sensitlvities-Radio-up io 3 mV Magnetic Plckup- 3 mV Correct whinin \pm 1 dB on R.I.A.A. curve. Ceramic Pickup -up to 3 mV : Auxiliary-up to 3 mV . - Output-250 mV
- Signal-to-noise ratio-better than 70 dB
- Channel matching - within 1 dB .
- Tone Controfs-TREBLE +15 to -15 dB at 10 KHz : BASS +15 to -15 dB 100 Hz .

SINCLAIR POWER SUPPLY UNITS

PZ-5 30 volts unstabilised-sufficient to drive two 2-30's and Stereo 60 for the majority of domestic applications.
£4 19s. 6d.
PZ-6 35 volts stabilised-ideal for driving two Z-30's and a Stereo 60 when very low efficiency speakers are employed.
£7 19s. 6d.
PZ-8 45 volts unit for use with two Z-50's and Stereo 60 (less mains transformer).
£5 19s. 6d.

APPLICATIONS

High fidelity amplifier: car radio amplifier; record player fed direct from pick-up: intercom: electronic music and instruments: P.A. laboratory work. etc. Full details of these and many other applications are given in the manual supplied with your Z.30.

 and guaranteed

New for Project 60

 Active Filter Unit

 Active Filter Unit}

The Sinclair Active Filter Unit is a new addition to our Project 60 range of high fidelity modules and is designed to complement the other modules in the range. Its performance is such, however, that users of other amplifier systems might well consider adding it to their assemblies
The purpose of a filter unit is to reject tequencies above (scratch) or below (rumble) a specific cut off frequency when these frequencies contain unwanted interference. The Sinclair A.F.U. is uniques in that the cut off frequency is continuously variable for both the scratch and rumble units and, as the attenuation in the rejection band is rapid (12 dB per octave), the removal of interference can be achieved with less loss of the wanted signal than has previously been possible.
Each channel of the A.F.U. has an overall gain of unity and, as the imput impedance is high and the output impedance is low, it may be connected between the pre-amplifier and power amplifier sections of any amplifier. Both amplitude and phase distortion have been made quite negligible by the careful design and the large amount of negative feedback employed.

Specifications

Designed for connection between the Stereo 60 pre-amplifier and two Z-30 or Z-50 power amplifiers.
Employs two Sallen $\&$ Key type active filter stages, the first being a rumble (high pass) filter and the second a scratch (low pass) filter. The two stages use complementary transistors to minimise distortion.
Supply voltage 15 to 35 V Current 3 mA max.
Gain at 1 KHz , filters flat $0.98(-0.2 \mathrm{~dB})$
H.F. Cut off $(-3 \mathrm{~dB})$ variable from 28 kHz to 5 kHz
H.F. filter slope 12 dB /octave
L.F. cut off (-3 dB) variable from 25 Hz to 100 Hz
L.F. filter slope $12 \mathrm{~dB} /$ octave

Distortion at 1 kHz (35v supply) 0.02% at rated output (250 mV R.M.S.)
Frequency response, flat position, 35 Hz to $20 \mathrm{kHz}-1 \mathrm{~dB}$
25 Hz to $28 \mathrm{kHz}-3 \mathrm{~dB}$
Built, tested and guaranteed
£5.19.6

2-5 $\begin{aligned} & \text { FORTY WATT R.M.S. (} 80 \text { WATT PEAK) } \\ & \text { HIGH FIDELITY POWER AMPLIFIER }\end{aligned}$

The Z-50 has been designed for applications requiring higher output power than the Z-30. The maximum supply voltage is raised to 50 Volts and the output power is 40 watts continuous R.M.S. into 3 or 4 ohms and 30 watts continuous into 8 ohms. The $Z-50$ is otherwise identical to the $Z-30$ in design and specification, the increased power being obtained by using much higher current power transistors used well within their rated limits.
The Z-50 is, of course, compatible with the other Project 60 modules, such as the Stereo 60 , and since the price is only $20 /$ - higher than that of the $Z-30$. customers may like to consider the advantages of buying two Z-50's for their systems now in case higher power is required later.
Where the full output power is not required the Z-50 may be used with the PZ-5 or PZ- 6 but for the full output power the PZ-8 should be used. This unit is a stabilised power supply providing 45 volts at up to 3 amps. It is supplied without mains transformer as it is designed for use with a readily available "Radiospares" unit.
Z-50 Power Amplifier
built, tested and guaranteed

$$
£ 5.9 .6
$$

PZ-8 Power Supply Unit
£5.19.6

USE THIS COUPON TO ORDER A.F. UNIT AND Z-50's

ISOLATING/STEP DOWN
TRANSFORMER
Primary 0, 240v., Sec. 0, 115, 240v. 10a. Ideal for workshop supply, only 6in. $\times 7 \mathrm{in} . \times 7 \mathrm{in}$. £8, cart. 20/-.

STEP DOWN TRANSFORMER Primary 0, 240v., Secondary 0, 115v. 300 watts (conservatively rated). $4 \frac{1}{2} \mathrm{in} . \times 4 \mathrm{in} . \times 4 \mathrm{in} .45 /=$, p. \& p. 8/-.

12v. 4a. POWER SUPPLY Brand new, weighs 11 lb . Constant voltage transformer, input 0-112.5-123.5-195input 0-112.5-123.5-195-
$220-235 v .$, capacitor smoothed output.
 £9.10.0 plus 10/- carr.

EX-COMPUTER
 POWER SUPPLIES

Reconditioned, fully tested and guaranteed. These very compact units are fully smoothed with a ripple better than 10 mv . and regulation better than 1%. Over voltage protection on all except 24 v . units. 120 v . - 130 v . a.c. $50 \mathrm{c} / \mathrm{s}$ input. Mains transformer to suit $\mathbf{£ 3}$ extra if required.
We offer the following types:
6 v .8 a . $£ 10 \quad 20 \mathrm{v} .15 \mathrm{a} . £ 15$
6v. 15a. £14 30v. 7a. $£ 12$
12 v 20a. 116 24v. 4a. £14
Carriage 15/-per unit

```
DIODES EX EQUIP, SILICON
150 PIV 10 amp. .. .. SI 4or 10/-
150 PIV 20 amp. .. ... 4 for 20/-
4 0 0 \text { PIV } 3 5 \mathrm { amp }
```

 p. \& p. 1/-
 LARGE CAPACITY ELECTROLYTICS $4 \frac{1}{2} \mathrm{in}$., 2 in . diam. Screw terminals. Top quality German manufacture. Will withstand short circuit discharge.
$4,000 \mu \mathrm{~F} 72 \mathrm{v}$. d.c. wkg.
$16,000 \mu \mathrm{~F} 12 \mathrm{v}$ d.c. wkg.
7/6 each, p. \& p. 1/-
£3.10.0 doz., p. \& p. 10/-

PYE CAR RADIO Push Button Tuning Heart
This PRESTOLOCK 5 station Push-Button Tuner Heart with Manual Over-ride is an ideal basis for a quality $A M$ car padio. Size $6 \frac{1}{2} \mathrm{in} . \times 4 \mathrm{in} . \times 2 \mathrm{in}$. 25/-plus 3/-p. \& p.

RELAY OFFER

Single pole changeover. $2 \mathrm{in} . \times 0.6 \mathrm{in} . \times 0.75 \mathrm{in}$. 50 v . 2.5 Ko coil, operates on $24 \mathrm{v}, 8$ for $10 /$ 5,000 a vailable, p. \& p. 1/6.

MEMORY CORE STORE PLANES
160 BITS E1. P. \& P. 2/-
4,000 BITS E4. P. \& P. 4/-
10,000 BiTS E8. P. \& P. 8/-
EXTENSION TELEPHONES
Why get out of the bath when
the phone rings. Install one in the bathroom.
19/6 each. p. \& p. 5/-
$35 /-$ for 2 , p. \& p. $8 /-$.
These are extension phones and do not have belis.

1,750 COMPONENTS
 FOR 65/- ? ?
 YES, QUITE TRUE,
 READ ON

BUMPER BARGAIN PARCEL

We guarantee that this parcel contains at least 1,750 components. Short-leaded on panels, including a minimum of 350 transistors (mainly NPN and PNP germanium, audio and switching types-data supplied). The rest of the parcel types-data supplied). The rest of the parcel is made up with: Resistors 5% or better
(including some 1%) mainly metal oxide, (including some 1%) mainly metal oxide,
carbon film, and composition types. Mainly carbon film, and composition types. Mainly
t and $\$$ watt... dlodes, miniature silicon types有 and watt dlodes, miniature silicon types
OA90, OA91, OA95, IS130, etc. . . capacitors, including tantalum, electrolytics, ceramics and polyesters . . . inductors, a selection of valves
also the odd transformer, trimpot, etc., etc.
These are all miniature, up to date, professional, top quality components. Don't miss this, one of our best offers yetll Price 65/post and packing 6/6 U.K., New Zealand 20/-. Limited stocks only.

9 OA5, 30A10, 3 Pot Cores, 26 Resistors, 14 Capacitons, 3 GET 872, 3 GET 872B, 1 GET 875. All long lesded on panels 13 in . $\times 4 \mathrm{in} .2$ for 10/-, p. \& p . 3/6d. 4 for 20/-, post free.

EX COMPUTER PRINTED CIRCUIT PANELS $2 \mathrm{in} . \times 4 \mathrm{in}$., packed with semi-conductors and top quality resistors, capacitors, diodes, etc. Our price, 10 boards 10/-, p. \& p. 2/-. With a guaranteed minimum of 35 transistors.
25 boards for £1, p. \& p. 3/6. With a guaranteed minimum of 85 transistors. Transistor data included.

COMPONENT PACKS

200 capacitors, electrolytics, paper, silver mica, etc. 10/-. Postage on this pak 2/6.
250 mixed resistors 10/-, post \& packing 2/-
40 wirewound resistors, mixed types and values. $10 /-$, postage $1 / 6$.

QUANTITIES AVAILABLE EXTRACTOR/BLOWER FANS (Papst)
100 c.f.m. $4 \frac{1}{2} \times 4 \frac{1}{2} \times 2$ in. 2,800 r.p.m., 240 v . A.C. Precision made in West Germany by Papst. These Fans are the best available. Genuine bargain at 50/- each. P. \& P. 5/-.

KEYTRONICS

52 Earls Court Road, London, W. 8 Tel. 01.4788499
MAIL ORDER ONLY. Retall and Trade sudplied. Export enquiries particularly welcome. S.A.E. FOR LIST

Io way ITHERGOMT SYSTEMS

Special Purchase at fractional cost of comparable UNREPEATABLE systems costing over $\mathbf{~ c 9 0}$. Our systems include a 10 - OFFER AT ONLY
way Master console and 10 Sub-Stations. Perfect 2-way "Instant" communication between all your departments. This is a first-class equipment and not to be compared with other low priced systems on the market. Easily Installed. Fully Guaranteed. Fully transistorised. Battery operated (4 U2's). First-class audibility and robust construction. Perfect for Offices; Hotels: Factories: Surgeries; Warehouses; Schools
 Garages, Etc.

MINIATURE "F.M. RADIOMIKES" few only now available £10 each (not to be used in the U.K.)	RUSSIAN "AURIGA" 8 wave-band portables (6 shorts, $13-50$ metres, Long and Medium). World-wide reception. Brand new: fully guaranteed. only £16.10.0	MINIATURE "JECO" pocket "tape recorders" capstan drive: over 1 hour recording time. Standard tape: superb reproduction through internal speaker. Highly sensitive microphone. Size approx. $7 \frac{1}{2}{ }^{\prime \prime} \times 3 \frac{1}{2}$ " Few only £ 15.4 .6
5 NAVAATION ST, B'HAM 2(In town-on the Bridge)Te. 021-643 0972		

Low cost regulated DC power supplies

Compact modular design providing optimum performance at love cost. Fully stabilised supplies from $0-60 \mathrm{~V}$ up to 3A per module. Modules can be arranged for saries or parallel operation.

the new M.V. range

KSM Electronics Ltd., Bradmore Green Brookmans Pk., Herts. Tel Potters Bar 59707

MrOPTOELIETRONICS From PROOPS

PHOTOCONDUCTIVE CELLS

CADMIUM SULPHIDE CELLS (Cds)

inexpensive ight sensitive resistors which require only simple circuitry to work as lights, exposure meters. brightness controls. automatic porch lights. etc. Not polarity conscious - use with A.C. or D.C. Spectral response covers whole visible light range.

MKY101-C
Epoxy sealed. in. diam. $x \frac{1}{1} \mathrm{in}$. thick. Resistance at 100 Lux -500 to 2.000 ohrns. Maximum voltage 150 A.C. or D.C. Maximun cuirent 10/6 post free

MKY71

Glass sealed with M.E.S..base. Glass envelope $\frac{1}{10}$ in. diam.. Overall length 1 in. Resistance at 100 Lux - 50 Kohms to 150 Kohms. Maximum voltage 150 A.C. or D.C. Maximum current 75 mW . $8 / 6$ post free

PHOTOGENERATIVE CELLS

Selenium cells in which light energy is converted into electricity directly measurable on microammeter or used with amplifier as light trigger for alarm and counting devices. luminous fluxmeters. exposure meters, colorimeters, etc.. Spectral response
covers visible light range. covers viśible light range

Type 1-1 $\frac{1}{2} \times 1 \frac{3}{16} \mathrm{in}$. Output 1 mA at 0.6 volts at 1.000 Type 3-100 $\times 50 \mathrm{~mm}$. Output 4 mA at 0.6 volt at 1.000
$22 / 6$ post free

REED SWITCH COILS \& CAPSULES

Compact assemblies of reed switches and operating coils that permit the design of an infinite variety of multiple switch circuits in an extremely small space. They eliminate the bulk and open contact disadvantage of electro-mechanical relays; hermetically sealed contact isolation ensures longlife reliability. Small enough to combine with solid-state components on printed clicuit boards. Ideal for switching matrices, binary kits, control systems. etc. These were removed Intact from highly ex penslive computer mechanisms and are guaranteed to be in perfect working order. Each capsule consists of a rare-metal screened, 24 volt DC operating coil on a nylon former with one detachable end for the removal and replacement of reed switches.
Types available
R/C2 Two reed switches, contacts normally open. Size overall: $1 \| x|x|$ in, $5 /$ - post free R/C4 Four reed switches, contacts normally open. \mid Size overall: $1 \& \times \$ \times 1$ in $10 /$-post free R/C6 Six reed switches. 4 contacts normally open. 2 normally closed.|Size overall: 1 \& 1 d x in.

15/-|post free

INFRA-RED TRANSMITTERS \& RECEIVERS

Unique devices in a brand new electronic field that can be exploited in a wide range of applications. Minlaturized construction and solid state clrcuit design is combined with outstanding modulation and switching capablities to provide inflnite posslbill burglar alarms, batch counters, level detectors, etc., etc.
(v) 35
MGA 100
 85/-
MSP3

GALLIUM ARSENIDE LIGHT SOURCE-MGA 100 alignment and heat sinking.
MAX RATINGS
Forward current IF mar:
Power dissipation: mak." D.C....... 400 mA . Forward peak current If max." (pk),......6.6A Reverse vollage VA max 1.0 V .

INFRA-RED PHOTO RECEIVER - MSP3
Ulirs senstive detector/amplifler for infra-red (Gallium Arsenide) or visible light optrical links Ulrs senstive detector/amplifier for infra-red (Gallium Arsenide) or visible light optical links
reception. Spectral response 9500 A . Robust, cylindrical package is coaxial with incident light to reception. Spectral response 9500 A. Robust, cylindrical package is coaxial with incident light to facilitate optical alignment and heat sinking MAX RATINGS
 Output Current Intensky100mA. Voltage.........25V. Operating Temperature..........from
$-30^{\circ} 10+125^{\circ} \mathrm{C}$.
Supplied complete with suitable lenses, full Technical Data and Application Sheets, including Line of Sight Speech Link.

FIBRE OPTICS

Highly flexible light guides that transmit Ifght to inaccessible places as easily as electricity is conducted by copper wires. Fibre optics make it possible to control. miniaturize, split. reflect or transfer light from one source to many places at once and to operate photo devices, logic circuits, or illuminate in ways never before possible. Proops offer both glass fibre optics or inexpensive Crofon plastic fibres for hundreds of experiments or serious applications in a fascineting new science.

KIT $1 £ 16$ Postree
Contains: $1.5 \mathrm{~mm} \times 24 \mathrm{in}$. $3 \mathrm{~mm} \times 18 \mathrm{in}$., and $6 \mathrm{~mm} \times 12 \mathrm{in}$. light guides, plus 24 in . long x 2 exit component for punched card or coding applications. Also battery operated light separatlon and $3 \mathrm{~mm} / 3 \mathrm{~mm}$ and 3 mm separation, and $3 \mathrm{~mm} . / 3 \mathrm{~mm}$. and $3 \mathrm{~mm} . /$

- Special offer of IMAGE FIBRESCOPES £5 postfree -

Between 50,000 and 60,000 coherently arranged, 15 mlcron glass fibres that provide (with appropriate optics) perfect visual inspection into otherwise inaccessible areas. Originally made by Rank Taylor-Hobson for use In industrial and medical fibrescopes tansper, lese flar sigh, superf trander is Technical Colleges and for many other applications that require highly sophisticated means of access to enclosed, difficult io get at places, length overall: 3 ft Cross sectional $3 \times 3 \mathrm{~mm}$. Resolurion:101P/mm. $201 \mathrm{P} / \mathrm{mm}$

LOW COST CROFON FLEXIBLE LIGHT GUIDES Newly developed plastic light transmitting medta by oupont. Which can be used for bots serious projecis and dyed or capped with epoxy resin. Temperature range -40^{*} to $+170^{\circ} \mathrm{F}$. No loss of light through bending 12 page Data and Appllcations booklet supplled free with bach order. Types availabla:
Multi-strand- 64 special plastic fibres. tightly bundied together in a tough, flexible conduit. $8 / 6$ per foot.
two feet, $17 /-p \& p^{1 / 6 .}$

RANK TAYLOR-HOBSON ENGINEERS KITS
Basic fibre optic components that demonsirate new ways of employing light in serlous applications. Wwo kits are available; each contains high-grade glass-fibre light guides consising of thousands of fibres tighly bundled in flexible sheaths with ferruled, optically polished ends. together with connecting and light
source components Each is supplied complete with card wallets containing technical and application data.
£28 Post Free
Kontains: $3 \mathrm{~mm} . \times 18 \mathrm{in} ., 6 \mathrm{~mm} \times 12 \mathrm{in}$. light guides; 1.5 mm . Y guide with iwo 12 in . long lails: 24 in. long 12 exit component for coding or punched card applications. 24 in. lengths of light guide. Also coherent solids consistastic $\mathbf{2 5 \mathrm { mm }}$. diam, field flat tening consisting of 12 in. image conduit with polished 12 in . mage conduit wirh polished ends, 2. way adaptor, fibre optic torch and batteries,
\qquad

Wi/kínsons FOR RELAYS P.O. TYPE 3000 AND 600 BUILT TO YOUR REQUIREMENTS - QUICK DELIVERY

COMPETITIVE PRICES-VARIOUS CONTACTS DUST COVERS QUOTATIONS BY RETURN LaRGE STOCks held of g.e.c. minature sealed relays

MINIATURE BUZZERS. 12 voles with tone
adiuster, $7 / 16$ each as illuatrated.
Quantity Rates.
 RECTIFIER UNITS/BATTERY CHARGERS-WESTA. 506 voles 15 amps D. C. Heavily damped $0 / 20$ ammeter moving
coil 2 f in. reads true charging current, which is regulated by coil 2 in . reads true charging current, which is regulated by
a four position rotary switch and sliding resistance. A ballast is fitted to smooth out mains variations. A.C. and D.C. fuses
fitted. Size $17 \% \times 13 \% \times 12 \mathrm{in}$, designed to stand on bench or
fit to a wall. 68.100 .0 . MAGNETIC COUNTERS Vete. MAGNETIC COUNTERS. Veeder Root with zero reset.
800 counts per minute, counting to 999,999 , II volts A.C. PRECISION GERMAN MADE MAGNETIC COUNTERS.

Mlcroamps $0 / 500$ isint avallable. MC....25/Microamps $0 / 5002 \mathrm{in} . \mathrm{MC} . . .37 / 6$
Milliamps $0 / 502 \mathrm{in} . \mathrm{MC}$ Milliamps $0 / 502 \mathrm{tin}$. MC
Milliamps $0 / 500 ~$
Ampe 50-0-50 2in. MC
Amps $0 / 52 \mathrm{in}$. M
Volts 0 RO 2 in. MC
Volts $0-402 \mathrm{in}$. MC
Voles $0 / 10$ A.C. 342 42
"VISCONOL-CATHOORAY" CONDENSERS.
mid. 15 kV . $9 / \mathrm{F}, .02$ mid. $10 \mathrm{kV}, 10 / \mathrm{i} .025 \mathrm{mid} .25 \mathrm{kV}, 5 / \mathrm{F}$ $.05 \mathrm{mfd}, 5 \mathrm{kV}$, $9 / \mathrm{F} ; 01 \mathrm{mid} \mathrm{kVV} 9 / \mathrm{k} ; 6 \mathrm{kV}, 17 / 6 ; 0.5$ mid. PORTABLE VOLTMETERS 30 v moving coll DC precision C8.17.6, post $8 / 6$.; 160 v moving iron $\mathrm{AC/DC}$ Bin. mirror
scale in p . wood case $\mathrm{E4} .19 .6$. post $7 / 6: 250 \mathrm{v}$ moving iron AC/DC 6 in. scale in pood case $68,10.0$ post $7 / 6$. CELL TESTING YOLTMETERS $3-0-3 v$ moving coil DC CAMBRIDGE PORTABLE MILLIAMMETER precision grade 1,0
and $1,000 \mathrm{~mA}$. enclosed case $£ 25$, post $10 / 6$. PORTABLE AMMETERS 0-3 A. moving iron AC/DC 3 in . MEGGERS, SERIES 2.500 volts, range $0 / 100$ Meg ohms-infin017 10 Complete with

ELLIOTT CENTURY TEST SETS. First-grade,
reading Absolute, D.C. volts $.075,3,30,150,300$ and reading Absolute. D.C. Volts.
$750(550$
and 60 mA) and Absolute D.C. amps 1.55 mV on in. Mirror scale. Wood case, with and $600(75 \mathrm{mV})$ on 5 in . Mirror scale. Wood case, with
shunts in fitted compartment, 25, cge $15 /$.

BTV

RADIO \& TV COM PONENTS (Acton) LTD 21a High Street, Acton, London, W. 3.
also 323 Edgware Road, London, W.2.
Goods not dispatched outside U.K. Terms C.W.O. All enquiries S.A.E.

Complete stereo system- $£ 29$ 10s.

The new Duo general-purpose 2-way speaker system is beautifully finished in polished teak veneer, with matching vynair grille. It is ideal for wall or shelf mounting either upright or horizontally
Trpe 1 SpECIFICATION
Impedance 3. 8, or 10 ohms (please state impedance requiredl. It uncorporates high flux $6^{\prime \prime} \times 4^{\prime \prime}$ speaker and $2!^{\prime \prime}$ iweeter. Teak finish $12^{\prime \prime} \times 64^{3 *} \times 54^{\prime \prime}$
 speaker and $2 t$ " high trequency speaker. 3 ohms impedance.
6 guineas plus $15 /-\mathrm{p}$. 8 p.
Garrard Changers from E 7.19 .6 d . p. \& p. $7 / 6 \mathrm{~d}$.
Cover and Teak finish Plinth E4. 15.0d. 7/6d. D. a p.

- nedV Integrated Transistor Stereo Amplifier
£9 10s. plus 7 6d.p. 8 p .

The Duetto is a good quality amplifier. attractively styled and finished. It gives superb reproduction previously associated with amplifiers costing far more.
SPECIFICATION
R.M.S. power output 3 watts per channel into 10 ohms speakers

INPUT SENSITIVITY: Suitable for redium or high output crysial cartridges and tuners. Cross-talk better than 30 dB at $1 \mathrm{Kc} / \mathrm{s}$
CONTROLS: 4 -position selector switch $(2$ pos. mono and 2 pos stered) dual ganged volume control. TONE CONTROL: Treble lift and cut. Separate on off swith. A preset balance control.

 INTEGRATED HIGH FIDELITY TRANSISTOR STEREO AMPLIFIER f145s. $\mathrm{f} / \mathrm{6}$ p. \&
"' x 21" Built and tested.
SPECIFICATION
OUTPUT. 10 warts per channel into 3 to 4 ohms spaakers (20 watis) monort
INPUT: 6 -position rotary selector switch (3 pos. mono and 3 pos. stereol. P.U. Tuner. Tape and Tape Rec. out Sensitivities: All Inputs 100 mV into 1.8 M ohm
FREQUENCY RESPONSE: $40 \mathrm{~Hz}-20 \mathrm{KHz} \pm 2 \mathrm{DB}$
TONE CONTROLS: Separate bass and treble controls. TREBLE 1398 lift and cut (at 16 KHz) BASS: 15 dB lift and 25 dB cut lat 50 Hz)
Viscount Mark II for use with magnevlc pick ups specification as above. Fully equallsed magnetic pick ups. Suitable for carridges with minimum ourput of $4 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$ at 1 kc . Input Impedance 47 k . E15 15 s . plus $7 / 6$ p. \& p.

OUTPUT: 10 watts Into a 3 ohms speaker INPUTS: (1) for mike (10 m.v.). Input (2) for gram. radio (250 T.v.) Indivdual bass and treble control.

辟
THE DORSET

600 mW Output)
£5.5.0
plus $7 / 6$ p. \& p.
CIrcuit $2 / 6$. FREE WITH PARTS MAINS POWER PACK KIT: 9/6 extra

7-transibear tuilv wint with baby alarm facility. Set of perts. The latest modulized and pre-alignment techniques makes this simple to bulto

NEW COMPLETE HI-FI STEREO SYSTEM £41

cartridge or 2025TC. Viscount amplifier Mi. I. Two tyoe speakers, pilnth and cover

THE RELIANT MK.II Solid State
General Purpose Amplifier in teak-finished case f6 16 s .
$+7 / 6$ p. \&

MAINS INPUT: $220 / 250$ volts
SIZE: $10 \mathbf{t}^{\prime} \times 4 \frac{4}{4} \times 2 \frac{1}{2}$
Mk. 1 £5 15s. $+7 / 6$ d. D. \& p. less Teak-finished case

ELEGANT SEVEN MK. III (350mW Output) f5.5.0 plus $7 / 6$ p. \& p.
CIrcuit $2 / 6$. FREE WITH PARTS MAINS POWER PACK KIT: 9/6 axtra.

J-tanaistor fully turiabla M.W.-LW. suparher portab Set of parts Complete with all components. including ready etched and drilled printed elrcuit board-back printed for

SPECIAL OFFER

Complete sterto systemb comprising BALFOUR 4 speed auto player with stereo head 2 DUO speaker systems size $12 \times 6 \frac{1}{2} \times$ 54. Plinth liess cover) and the DUETTO stereo amplifier. All above items
$£ 25$ plus $\mathbf{f 2}$

X101 10w. SOLID-STATE HI-FI AMP
 With Integral Pre-amp.
Spachictions. Pawer Outpur linto 3 ohms speasem) 0 mome Sensimbiy lior neted output: 1my into 3 K
 Response 0.35: A1 rated outpof 1.5\% Frequence Scoonse, Minusis 38 points 20 Hz and 40 KHz

69/6 pion 28p\&
CONTROL ASSEMBLY: linciuding resistors and capacitors). 1. Volume: Pifice $\$$

50 WATT AMPLIFIER

3 electionically mixed channols. with 2 inputs per channec, enables the use of 8 separbite instruments at the same ime The volume Conitols for each chanmer ary located directly above the corresponaling Input zockets SEMSITTVITES AND INPUT ImPEOANCES. Chennels 1824 AV at 47aK. These 2 channeis (4 inguris) are
 output TONE COMTROLS ARE COMMON TO ALL INPUTS Bams BCost +1268 at 60 Hz Bass $\mathrm{Cat}-13 \mathrm{~dB}$ of 60 Hz Treble 3 oost +11 AB at 15 kHz Tietile Cur
 and 20 KHz POWER OUTPUT: For speech and music 50 watis ms 100 watts peak For sustained musle 45 watts rms. 90 watts peak for sinc wave 38.5 watts tma. Nearly 80 wats peak Total distortion si motod output 3.2 m at 1 KHz Total distortion al 20 walls 0.15% at 1 KHz MEGATVE FEEOBACK 2008 at 1 KHz SIGNAL TO NOISE RATIO GOOB MAINS VOITAGES a6lustable fram 200250 V . A.C. $50-60$ Hz A protective fluse is located at the rear of unil Output impedance 3. 8 ond 15 ohms

ADMIRALTY B. 40 RECEIV ADMIRALTY B.40 RECEIVERS High
 £22/10/O, carr, $30 /$. With circuit diagramb. Also
avallable 141 L .F. verslon of above. $15 \mathrm{Kc} / \mathrm{s}-700$ Kс/а. £17/10/-. Carr, 30/-
R209 Mk. II COMMUNICATION RECEIVER
 11 ralve hurb
grade coom.
gradecoma.
manjcation
recelver mult-
able for tropl.
cal nose. $1-20$
Mc/a. on
Gnids. AM/
CW/PM operation.
inces precisporB.F.O. Aerial trimmer, internal speaker wnd
12v. D.C. Linternal power supply. Bupplied in excellent condititon, sully
Lested and checked.
TYPE IJA DOUBLE BEAM
OSCILLOSCOPES BARGAIN

CLASS D. WAVEMETERS
48

 £7.18.6 Carr. 7/6.
CLASS D WAVEMETERS No. 2 operation. Complete with calibration charts.
Excellent condition $\mathrm{f12/10/0} \mathrm{}. \mathrm{Carr}. \mathrm{30/} \mathrm{}$.

LELAND MODEL 27 BEAT FREQUENCY OSCILLATORS 0.20 Kc/s. Output 5 K or 500 ohma. $200 / 250 \mathrm{~F}$.
A.... Orered in excelleat condition, $\mathrm{El2/10/-}$,

Carriage 101.0 FORMERS. $180-260 \mathrm{v}$. input. Output 230%.
Arailable 150 or 0226 w . \& 12.10 .0 . Cart. 5%. Avallable 150w of $225 w$. 212.10 .0 . Cart. $5 /$ TO- 2 PORTABLE
OSCILIOSCOPE
 TO-3 PORTABLE OSCILLOSCOPE. 3° TUBE

 sensitwith $1.5 \mathrm{cps}=800$
handw. Input imp. 2 mes 0 KHZ. Imput imp. 2 meg \boldsymbol{D}
20 PF . Tme base. © ranges
$10 \mathrm{cpa}-300 \mathrm{KHZ}$. Byn. 10 eps- 300 KHz. Byn
chroniantion. Internal/ex
ternal. Iluminated geale. $40 \times 215 \times 330 \mathrm{~mm}$. Weight $15+1 \mathrm{bs}$. $220 / 240 \mathrm{~V}$ £37.10.0 Carr. 10

CRYSTAL
CALIBRATORS CALIBRATO
NO. 10 Bmall portable ersatal
controlled
wavemeter. Bize 7hod $\times 7$ Filin. $\times 4$ in. Frequency range sol
Ke/o-10 Mc/s (up to
30 Mc/a on harmonice) $30 \mathrm{Mc} / \mathrm{m}$ on harmonices).
Calibrited dial. Power requiremental 300 Power
10 ma and 12 V.D.C.

[^19]Large quantity available for EXP2 TRANCEIVERS
Large quantity available for EXPORT! Excellent condition. Enquiries invited

UNR-30 4 BAND
COMMUNICATION RECEIVER
Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates BFO. Built-in speaker and phone jack. Metal cabinet. Operation 220/240 v. A.C. Supplied brand new, guaranteed with instructions. 13 gns . Carr. 7/6. EDDYSTONE V.H.F. RECEIVERS
770R. 19-165 Mc/s. E150.

LAFAYETTE SOLID STATE HA600

 55AND AM/CW/SSB AMATEUR AND SBORT WAVE. $150 \mathrm{ke} / \mathrm{s}-400 \mathrm{Ke} / \mathrm{A}$ AND $550 \mathrm{Ke} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. P.E.T. Front detector 2 mechanical tilters Wars dial Product

TRIO COMMUNICATION RECEIVER MODEL 9R-59DE

4 band receiver covering $300 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Me} /$, continuous
and olectrical bandapread on $10-15,20,40$ and 80 metres. and olectrical bandapread on $10-15,20,40$ and 80 metres.
8 valve plua 7 diode circutt. 48 ohm output and phone

 above recelver.

TRIO TS 510 Amateur Transceiver with speaker and mains P.S.U. \&180 TRIO JR 500SE 10-80 Metre Amateur Receiver

LAFAYETTE HA. 800 SOLID STATE MATEUR COMMUNICATION RECEIVE
SIX BANDS $3.5-4,7.7 .3,14-14.35,21-45$, 28-29.7, $50.54 \mathrm{Mc} / \mathrm{s}$.

 size $15^{\circ} \times 99^{\circ} \times 88^{\circ}$. Complete with instruction manual
557.10 .0 . Cair. Paud. ($100 \mathrm{Kc} / \mathrm{C}$ Crital $39 / 8$ exta)

TRIO JR-310 NEW AMATEUR BAND 10-80 METER RECEIVER IN STOCK $\mathbf{6 7 7 . 1 0 . 0}$

RCA COMMUNICATIONS RECEIVERS AR88D

TELETON MODEL CR-10T AM/FM STEREO TUNER AMPLIFIER

$4+4$ watt output. Inputs for ceramicter deve
 FM $88-108 \mathrm{MHz}$. Automatlo FM Stereo reception.
Btereo Indicator. Controls: Tuning, function Bereo Indicator. Controls: Tuning, function switch. Bitereo headphone sucket.
Bize 13 inia. $\quad 3$ in. $\times \quad 9$ in. appror.

POWER RHEOSTATS

High quality ceramie construction. Windings embodded in vitreoun enamel.
Heary duty brush wiper. Continuous rating. Wide ranke available ex tock. Hoarg duty bruab wiper. Continuons rating. Wide range
Blngle hole turdig, tin. dia, uhafta Bulk quantities availab Slingle hole didng, tin. dia. ahaita Bulk quantitiee available.
25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 1500 / 2500$ or 5000 ohme. 14. \& P. 1/6. 50 WATT. $10 / 25 / 50100 / 250 / 500 / 1000 / 2500$ or 5000 ohms, $21 /$. P. \& P. 1/6.
100 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$ or 2500 ohmal, 27/6. P. \& P. 1/6.

Spare rnovements lor Model 8 or 9 . (Fitted with Model 8 scaite) or banis for any multimeter.
Brand New and Boxed $60 / 6 \quad$ P. \& P. $3 / 6$ MARCONI TF.142E DISTORTION FACTOR METERS

Integrated amplifter circult
49/6 pont pad TE-65 VALVE VOLTMETER

High quality
What
Ith
In With 28 ranges.
 tengohms.
$220 / 240 \mathrm{~s}$. Complete A.C. operation. intructionit fl7/10/0. P.
\& P. $6 /$.

COSSOR 1049 DOUBLE BEAM D.C. coupled. Band width $1 \mathrm{Kc} / \mathrm{s}$. Pertect order. 225. Carr. 30/

NERATORS Osculator Teat
No. 2. A hagh
oujlity pretrigh quality precision or the Ministry
by Alrnec. Frequency coverage
$20.80 \mathrm{Mc} / \mathrm{l} . \mathrm{AM}$
ew porates precisolon dial. level meter, precislon atten 1 arar $1 \mu \mathrm{~V}-100 \mathrm{Mv}$.
Operat lon from 12 volt D.C. or $0 / 110 / 200 / 250 \mathrm{v}$. A.C. 81ze 12×84 a 910. Supplied in brand new
condition complete
with all teated, $£ 45$. Carr, 201 -

TE-16A TRANSISTORISED
SIGNAL GENERATOR
 A new portable BRIDGE. cellent ruuge and gceuracy at low cost
Kanges: R.
110.1 MEG.
 MIEA. 6 RAnges-
 1110MFD. 6 Rangea
\pm 2\%. TURNATIO $1: 1 / 1000-1: 1110$ \pm kanges $\pm 1 \%$. Bridge voltage at 1,000 CPS.
Operated from 9 volta. $100 \mu \mathrm{~A}$. Meter indication. Attractive 2 to $5 /$ metal case. 81 ixe $71^{\circ} \times 5^{\circ} \times \mathbf{8}^{\circ}$.
AUTO TRANSFORMERS $115 / 230 \mathrm{v}$. Blep up or step down. Fully shrouded
$150 \mathrm{~W} .42 / 6, \mathbf{P} . \& \mathbb{P} .3 / 6$

G. W. SMITH
 \& Co. (Radio) Ltd.

also see opposite page

All Mail Orders to-
147, Church Street, London, W. 2 Tel: 01-262 6562 (Trade supplied)

3, LISLE STREET, LONDON, W.C. 2 Tel: 01-437 8204 34, LISLE STREET, LONDON, W.C. 2 Tel: 01-437 9155 311, EDGWARE ROAD, LONDON, W. 2 Tel: 01-262 0387 OPEN 9-6 monday to Saturday (EDGWARE ROAD $1 / 2$ day thursday)

ELECTRONIC

NEW 6-CHANNEL TIME AND EVENT RECORDER

A self-contained instrument, speciffcally for recording events without the need for a combined recorder.
There is a separate and independent paper drive, with a monitor lamp Indicating when it is in operation. The pens are displaced $1 / 16^{\prime \prime}$, actlvated by a close contact system. Each of the 6 channels works independently of each other, with the pens writing at 72 hours per filling at a maximum speed of 10 pulses per second.
The recorder is supplied either in a portable cabinet or with rack mounting adaptions and the size is $15^{\prime \prime} \times 9^{\prime \prime} \times 91^{\prime \prime}$ deep. It welghs 10 lb . and is available in $220-240$ volt A.C. (50 cycles) or $110-115$ volt A.C. (60 cycles). The 6 -channel time and event recorder is available at the following speeds: $30,20,10,5,1$ per minute. 18, 12, 9, 6 per hour. Width of paper roll is 6^{*}, maximum diameter of roll is $3^{\prime \prime}$, length on standard $3^{\prime \prime}$ diameter paper roll is 200°. Price of the event marker is $£ 79-10-0$, plus $£ 5-0-0$ for the special vinyl-treated portable case.
The instrument is guaranteed for one year, and is available with a complete range of accessorles, including teledotos paper, graphic paper, plain paper, pens, pen containers and time bases. Prices of these ltems are available on application.

MEASURING INSTRUMENTS
 AND RECORDERS

PORTABLE AC/DC
 PEN RECORDER

A moat verantile pen recorler. Produces
 Limiting contscts to give diarm, and
limita the current when it exceeds the hikh and/or liow preset ruluee. Range:
0 . IMA D.O. Meter Reaistance 400
 600 ohm Impedince Boarce. Chart speed: 1 In . And 6 in .fhr. Chart Fidh: 31 in , curyi. linair, Power oupply: 230 V
50 Bz driving synchronouz Motor,

STRIP.CHARTINDICATING RECORDER
Chart ridth 98 in. 10 niv . Bensilitity. ± 0.17 of full seale. Bource impednnce

 araliable. NEW PORTABLE
RECORDING AMMETER

 $\mathrm{mm} / \mathrm{hr}$. Dimensions: $180 \mathrm{~h} \times 16 \mathrm{haw}{ }^{\circ}$ 245 mm . Weiebs: 6.0 kg . Llet
Our price $£ 35$. P. A P. 30/.

PEN RECORDER

Portable 1, 2 and 4 channel pea recordera by Kelvin Hughes. General parpose recordern providing elear inhrantaneous
and permunent reconde of phenomens and permanent recond of phenomens.
with compuratively high rates of change. The tormion oftrip sumpension of the moving-eoil reanders the tinstrament lmanume to the effect of vibrail and
acceleratione $8 i x$ posible chart apeeds. chart width
55 min. 1 lemgh 150 it., linearity 8 v , at 3 m.A. reaponge D.C. 20.100 c/f. Bingle
pen with anuplifer $\varepsilon 99: 2$ pen recorler 885. 4 yen with ampliner 1149 Also Spen reconder complitete with ampititera,
apecifcetion apecitication ne above but housed in

POTENTIOMETRIC 6 POINT
STRIP CHART RECORDER BRAND NEW
Por wes with thermocouplera. pyorMeters and otber e.mas. evurces. 6 point.
Range $(-100)-0-1+100) \mathrm{mV}(0-$ 1,600 dek. $a_{6} 6$ apeed 8 secs. Acecuncy $\pm 0.5 \% ; 10$ cbart
opeede $20-720$ mm/hr. Tropicalised opeedr
Including toole and topares. Listed at
at

SERVORITER Model FWS

By well-known American manufacturer. thrae 24 secs. Renlitance murce 10 K ohms max. Chart width 11 lin. This ita slow-speed recorder that can be used tor
measuring any quantity with a commeanaing any
paratively nlow rate of change such an temperature, humblitty ect. Bupplied rith electrovort coneroller that enable the sensitivity, reset, proportional bani enables the demanded temperature to be controlled and the actual temperature

COMPUTER \& PERIPHERAL EQUIPMENT

7 TRACK DIGITAL MAG.
NETIC TAPE STORAGE
NETIC TAPE STORAGE
DECK
These machines, originally ex-computer, datu atorageck Record and Replay head neared th one comanon unlt. Low pproxime head. Frequency reapona denaity 557 bp . Kc / c. to $50 \mathrm{Kc} / \mathrm{m}$. Bit

 motorn complete with vacuicm anembly Finiahed in bruah aluminium and matt black 8 ize 27 in . $x 28 \mathrm{ln} . x 88 \mathrm{in}$.
Weight 90 it . Price $£ 72,10.0$. Carrage weirgh
extra.

$\frac{1}{2} 7$ TRACK

Ex-computer record/replay head complete wih guldee. Little uaed Price 212.10.0. Cartiage $15 /$ -

BRAND NEW

Gresham Lion $1 \mathrm{in} .1+7$ track reompl/replay heads. Of the higheat profemanonal quality. Cost \&100 plus. Our price \&12.10.0. Carr. 15/.

9 TRACK 1 in

Record/replay headn with aprocket drive, driven by synchronoun nent problems. This can be fitted to any suktable type of tranapor nystem. Price $£ 81 \mathbf{1 0 . 0}$. Carriage $15 /$.

MULTI-CHANNEL OSCILLOGRAPH
MULTI-CHA
Type mur 12. The equipment consints of 2 unlte. The trolley Type Mur 12. The equipment consint, of 2 nolts. The trolley
mounted recorting unt with 12 oocilloscopes, lens sad camer anpembly, and the electronic console containing sppropriate ampli fiere, time basee and tlme markers. The lastrument han been designed to give maximum nexiblity. Price $£ 350$ complete

OSCILLOSCOPE CAMERA

Langharn-Thompson series 200 Type 'B' for use with type 'B'
230 AC slogle shot, frame rpeed and expoaure. Complete with 230 v AC Alngle shot, frame apeed and exponure. Complete with casette £65.

CANCELLED EXPORT

00 Column cand sorter and punch type 425/0. Price on application.

BRAND NEW COMPUTER

MPES EMPTY SPOOLS
Made by well-known manufacture
in. 2.400 ft .
in. Higheat graile 2.400 ft
in. 104 hm . dia. apool and casiette
in. 8 in in. dis. apool and casette.

TAPE PUNCH MODEL 257 HOLE

A multiwire tape punch designed for general application involving the conversion of parallel wire electrical impulaea Into pubched
papertape at 33 charactern per second. Unit completely selfpapertape st 33 charactern per second. Unit completely self-

7 HOLE NON PARITY TAPE PUNCH
New condition.
LOW SPEED 7 HOLE TAPE PUNCH
60 characters per second; by well-known manufactures.

TELETYPE 8 HOLE PAPER PUNCH BRPEII Also avallable 5 bole punch BRPE 2 as above. Thle model bies literchanageable beads. Complete with apooler. Price £35.

HIGH SPEED 5/7 HOLE OPTICAL READER 20 characters per necond.

CARD READERS

$\left.\begin{array}{l}80 \text { monnm } 1500 / 30 \text { model, punct } \\ 80 \text { columan } 1400 / 80 \text { modei veritier. }\end{array}\right\} £ 325$
Excellent

HOLLERITH 80 COLUMN CARD PUNCH TYPE HO29 \& VERIFIER AVAILABLE

PROGRAMME BOARDS BY SEALECTRO
Thene boards are batically a multi-pole multi-throw switch device running at wo degrees to each other. Contact is made by elther, shorting of plugging in ping. Ideal for prototype work, etc. Boards
avilimble to 24×602 plane. $£ 12.10 .0$. Pins avaliable $1 / 3$ each.

MEMORY PLANES
Ferrite core memory planes wilt wited
Perrite cores. Used for bullding sour own computer or as an interesting exhibit in the demonatration of a com-
puter. Mounted on plastic inaterial. frame 5×8 in. Conalating of matricen $40 \times 25 \times 4$ cores each one individually addreanable and dirided into ${ }^{2}$ halvec With independent nenne and inlidblt
wires. $£ 8.10 .0$. P. \& P. 3%.

MULLARD MATRIX
CORE STORE STACKS
A.W. 6115 planes 18×32 cores/per plane
A.W. 597 8 planes 32×32 cores/per plane

Single plane $40 \times 25 \times 4 \ldots$
Plexl-writer 7 hole punch
$£ 25.0$
255.0
E8. 10

MEMORY STORE

M.M. 1044 complete with logic circults mounted in Imhof cabinet.

Complete with AW597 Mullaril 32×32.

COMPUTERS

 order. Complete with paper tape punches, nod compatible fo Including test programmes. Full supportíng literature. PRICE ON APPLICATION.

DATA DISC HANDLER MK. IV
Belf-contained tuagnetic. diec memory unit. Deaigred for intagration Ith

EICHNER 8 HOLE PUNCH OR READERS
No motor dirive required, Solenoid operated equapment using 48 F . Reader $£ 29.10 .0$. Punch $£ 42.10 .0$.

FLEXIWRITERS FPC8

Both Punch and Read Type availsble. Any code can be made tosuticustom.

ALL ORDERS ACCEPTED SUBJECT TO OUR TRADING CONDITIONS A COPY OF WHICH MAY BE IMSPECTED AT OUR
PREMISES DURING TRADING HOURS OR WILL BE SENT ON PREMSEA DURING TEADING HOUR
APPLICATION THROUGE THE POST.

BR (in α KERS

OSCILLOSCOPES

Solartron CDS13 Solartron CD 513/2 solartron AD 657 solartion CD 711 solertion CD 7118-2. Solartion QD 910 Solartron $5238-2$ Furzehin 0.100 Airmec 249.
Airmec 723
Phulps PM 3230
Mullard L101 Double Beam Coshor 1035
Cossor 1049 Mkill
Cosary 1049

$£ 48.10$ £49.10 £55. 0 265. 0 £80. 0 2875. 0 258.10 225. 0 225. 0 E85. 0 £86.10 £25. 0 £40. 0

 235. 0

COUNTERS

VEEDER ROOT 6 DIGIT

 COUNTERSultable for counting all kind of protiou. Mechanically driven Type K Al337. Reaet manial knob. Ex-equipinent but new condition. special price $25 /$ - plut
miniature SQUARE 6 DIGIT
By Veeder Root. Rotary ratchet type, thatt. $9 / 6$ plue $2 / 6$ P. \& P.

6 DIGIT ELECTRICAL

IMPULSE COUNTER

With electrical and mechanical react. 4.400 ohtur coll. Renet 110 V . D.C. 800 The coil. Housed in plastic-alloy case. The units can be interlocked with each

EAC DIGIVISOR MK. II DIGITAL READ-OUT

SIGIT COUNTER

A very aturdy counter. Coli reaintance 100 ohms. Minimum perationsl volinge Jv. Counting apeed 13 counth per sec. Suinble and trequency meter $35 /-$ p. \& $\mathbf{~ p . ~} 5 /$.

MOTORS

HYSTERESIS REVERSIBLE MOTOR oppodite rohaton of output ahart. 240 V 50 Hz . fr.p.m. if r.p.ple

HIGH TORQUE INDUCTION MOTOR

LOW TORQUE HYSTERESIS MOTOR MA 23 Ideal tor inat rument chart driven. Extremely quiet, useful la a reas relative bifh inertin loads to be driven up to 6-oz/ia. Available ln the following apends and rangen: 240 V 50 Hz + $5 . \mathrm{pm} . \mathrm{m}$. 28 r.p.pin.,

HYSTERESIS CLUTCH MOTOR
Whe integrsi clutch allowing the motor to dmp out of engagement with the gear train, thereby facllitating eany resettipg whea used th timers or in conjunction with a light apring. 6 oz. Lorque at 1 r.p.m.

HIGH PRECISION MAINS MOTOR
230 V . 50 Bz z $1 / 8$ h.p. continuoualy rated. 3000 r.p.m. Made by
Croydon Englneering Model KA bo JFB. Bultable for capatan goydon size. 8 in. long, it in. dimmeter with 6 in . diameter fange and 4 fuxing boles. E4.10-0 esch. $\$ 1.5 .0$ poatage and packing.
SYNCHRONOUS MOTORS
Model $\frac{1}{2}$ Pr.p.b. and $1 / 10 \mathrm{~F}, \mathrm{p}, \mathrm{h}$. Aell startirag complote with gearing hnft in. dia. I in . long, $200 / 250 \mathrm{~V}$ b0 Ha. New condition Ex.

METERS

DIGITAL VOLTMETERS
M2022 digital volumeter and ratiometer, accurate to 0.0025% Rearing rate of 50 per second. Outputs: Parallel B.C.D. Bcale 3999 . Inputh: 25000 MQ CMR 180 dB on d.c. Range $10 \mu \mathrm{~V}$ to 1 KV . Thin to arare opportunity to obtain such en instroment at such low price of $\mathrm{£350}$. Carriage free.
DME006. An mil wolld etate D.V.M. having a wide application.
 B.C.D. £245. C.rriage free.
DM2023. This D.V.M. If nuitable for data-hoging due to the high C.M.R. 176dB. it has nix opernting modes. Accurnte to 0.001% and complete with plug in units to give either munnas or autornatic fanging from $10 \mu \mathrm{~V}$ to 1 KV with a 10 MQ input inapedance. 2460
 D7. All the above units bave been calibrated.
Digital Volunetera 2003 A.C./D.C. D.C. range 1 mV .1 KV . 4 digits. $\ell 135$.
2 in dia. mounting A.C. voltmeter $0-300$ V. A.C. $21 / 15.0$. Carriage Precinion A.C. © D.C. Watimeter. Model 8.67 certizcated. Accuracy
to $\ddagger \%$ up to 133 cj . Range $250 / 450$ V. and 0.5 to 1 A. $£ 89 / 10 / 0$. Cot\% up to $133 \mathrm{c} / \mathrm{a}$. Range $250 / 450 \mathrm{~V}$, and 0.5 to 1 A . $£ 28 / 10$ MULTI-RANGE TRANSISTORISED VOLT. METER 1063
Employing silicon planar F.E.T., this tratrument givee long-term ntrbulty and negligible dritt over A wide temperature range. Wide
 Centre zero on DC rages for differential circult application. Inpui Meter scabe Sin. With IM differemt colour for diferent scales. pecial price $£ 42 / 10 / 0$ each. Carriage $£ 1 / 10 / 0$.
MARCONI VALVE
VOLTMETER TF 428B/
Prequency responhe on prohe $10 \mathrm{Kc} / \mathrm{s} / 3.100 \mathrm{Mc} / \mathrm{A}$. Five separate Voluge Rangen. Overinad Protection $100-280$ A.C.I.P. Input 1 M 0
Ace. $\pm 2 \%$ or 00.2 V , Bize: $10 \times 16 \$ \times 9 \mathrm{n}$. $-151 \mathrm{~b} . £ 5 / 19 / 8$. LOW OHM SAFETY METER
12 milli-ampa os ohms sultable for testing
must be limited. $£ 12 / 10 /=$. P. \& P. $17 / 6$.

GENERATORS

SIGNAL GENERATOR
T.F. 801 A Bloe Wave, Bquare Wave Generntor. Prequency Range $0-310$ Ac/s. Output Voltage (tnaximum) 200 millivolts $\pm 2 \mathrm{db}$ Mark/Epace Ratio so/j0 on square wave. Price efo/10/0. Packing T.F. $517 \mathrm{~F} / 1$ Bine Wave. Square Wave Generator. Frequency Range $120 \cdot 300 \mathrm{M}$. C/s Auxilisry $18-58$ Meg. c/a, Output Foltage 0.2 Volts. Output impedance 75 ohmas. $£ 85$.
MARCONI T.F.I44G
Prequency Range $85 \mathrm{kc} / \mathrm{h} 25 \mathrm{Mc} / \mathrm{\sigma}$. Output voltage 1 micro-volt to 1 volt. Output impediance 1 micro-volt, 100 millit-volt. 10 ohms 100 milili-volte to 1 volt, 52.5 ohms. $259 / 10 / 0$ t 22 carriage.
PULSE GENERATORS Model
SQUARE WAVE GENERATOR
requencien: '1M $100 \mathrm{kc} / \mathrm{n} 10 \mathrm{kc} / \mathrm{a} 50 \mathrm{c} / \mathrm{n}$. Load impedance 75 obms ron 30-50 Milli micro neconds at 1 meg. Cyele. 259/10/0.

HIGH GRADE COMPONENTS

double audio faders iw

100 plus 1000 ohms. Ench resistive
dimmerio mustable aud independent of dimmerlondjustable aud independent of
each other. Ex-equipment but in an each other. Ex-equipment but in aht
almost new. condition. Price $23 / 10 / 8$.
P. \& P. $7 / 6$.

RIGHT ANGLED GEAR BOXES
ear boxes give a drive ratlo of 2.5 : 1 at ght anglea to the input. Driveable
hrough the $1 / \mathrm{p}$ shaft only. Dinenstons in. Wide $\times 3 \mathrm{it}$ in. deep $\times 4$ th. bigh. obust conal With pulley and ball race ahaft mount-
uge. Priee $98 / \mathrm{g}$. Carriage $15 /$.

DIMMERS

SCR Type. 600W. F.W. Bridge ciruult sultable speed control A.C. ox. 58/C. P. \& P. 5\% VOLSTATS
OLSTAT8 and constant voltage transformera. Large range in stock Prices from $£ 8 / 10 / 0$

PRECISION
 POTENTIOMETERS

TEN TURN 3600° ROTATION BRAND NEW

	Linearity			
100/100/100		Beckrona		80/-
100.	0.5	Becknan	A.	
200	0.5	Beckeman		601-
500	. 0.1	Beckman	s.	701
500		Colvern	2501	45/-
500		Foxe	PX	40/-
500		Colvern	2610	50\%
500		Colvern	26/1000/11	80/-
510	1.0	Relecan	HELL07-10	
1 K		Relcon	HRLO710	45)-
2 K	0.5	Becknan	8 All01	60\%
2 K	. 0.25	Beckman	7216.	80\%
2 K		Reliance	GPM	
2 K		General Con	GPA15/4..	40/*
5K		Relcon	07-10	50\%-
${ }_{3} \mathbf{K}$		Colvern	CLR2503.	60/-
10K	0.5	Becknasa		
10K	0.1	Beckman X	A	
10K	0.1	Colvern	CLR26/2001	701-
15K		Colvert	CLR2402..	
18K		Bectanan		
25K	0.5	Hellpot	8A.J337	80\%
29 K	. 05	Recluman	8A1244...	901-
30 K		Colverm	2402.....	301-
30 K		Bectrman.	8A95C....	60/-
30 K	0.1	Beckoman	A.88	70/-
30 K	. 0.5	Beckman.	8A1692	80/-
30K	. 0.25	Heckoman	8A1579	851-
30 K	. 1.0	Colvers	2402/1.	30/-
50K		Reltance	07.10	
50 K			07.5	
50K		Colvera	2503.	
50 K		Foxes	PI 1	
	0.5	Bechman	As...	
50 K	0.1	Bechman		70/-
$100 \mathrm{~K} / 100 \mathrm{~K}$		Ford		100/=
100 K	. 0.1	Beckman	A	70
100 K	. 5	Beckman.	A	
100K		Colvera	2501	45
100 K		Colvera	2610	
298K	0.1	Beckinan.	8A3902	70
300 K	. 1	Beckiman		70
THREE	RN 780°	ROTATIO		
100/10		Beckinan.		80
100/100		Beekmat	Type C....	
300		Beckima	9303	
1 K		Fox	P12/H3	
10K	0.5	Beckiman	C.n	
$20 \mathrm{~K} / 20$. 0.1	Beckman	C. 8	
10K/10K.	. 0.1	Beckriman	C	80/

FIFTEEN TURN 5400° ROTATION
 TWENTY TURN $\mathbf{7 2 0 0}^{\circ}$ ROTATION Méonem Controbl...PXEI30. 80/ 156 TURN 56160° ROTATION FIVE TURN 1800° ROTATION FIVE TURN 1800° ROTATION
\qquad -Fill.... 45
 FIVE-\&-A-HALF TURN

SINE COSINE
Kelvin : Hughea scps CLREPTO2 80 $\mathrm{BCP}_{\mathrm{BCP}}$
$.1+4 \mathrm{~K}$
$.30 \mathrm{~K} \ldots$
.25 K

PREISION BECKMAN 40 TURN
$14,400^{\circ}$ ROTATION
hremound Frecision Potentiometer. SE107A 20 watts at $40^{\circ} \mathrm{C}$ 3 A in . Diatne
Lat Price $£ 30$.

R.S.T. Valve mail order co.

BLACKWOOD HALL, 16A WELLFIELD ROAD STREATHAM, S.W. 16

 ${ }^{\text {Cv2306 }}$ 350/$\stackrel{\text { Cvis }}{ }$ CV4004 $101-$ CV4005 8/-
CV $400618 /-$ CV 4007
CV 4014
$7 /$ CV $401510 /$
CV 40246

CV 4025 | CV 4025 |
| :--- |
| CV 4031 |
| CV 4 | OV4003 7/-

CV $04412 /-$
CV $404510 /-$ CV4045 10/-
CV 046
CV CV 0048 12/6 CV 4062 17/8
CY $406430 /-$
CY 30
$12 / 6$ $\begin{array}{ll}\text { DAF91 } & 4 / 8 \\ \text { DAF96 } & 7 / 6\end{array}$ DAF96 $7 / 6$
DOC90 $20 /-$ DOC90 20/-
DET3
$1,0001-$ $\begin{array}{ll}\text { DET19 } & 8 / 6 \\ \text { DET20 } & 2 / 6\end{array}$ DET20
DET22
2/6
DET $\mathrm{DET23}^{110}$ DET25 50 $\begin{array}{ll}\text { DF91 } & 4 /- \\ \text { DF96 } & 7 / 6 \\ \text { DH63 } & 6 /-\end{array}$ $\begin{array}{ll}\text { DH63 } & 8 / 9 \\ \text { DH77 } & 4 / 9 \\ \text { DK } 32 & 7 / 9 \\ \text { DK } 91 & 6 /\end{array}$ $\begin{array}{lc}\text { DK91 } & 8 /- \\ \text { DK } 82 & 8 /- \\ \text { DK } & 7 / 9 \\ \text { DL86 } & 2 / 9\end{array}$ $\begin{array}{ll}\text { DLB6 } & 25 / 3 \\ \text { DL92 } & 6 / 3 \\ \text { DL94 } & 6 / 9\end{array}$ $\begin{array}{lr}\text { DL94 } & 6 / 9 \\ \text { DL98 } & 7 / 9 \\ \text { DL810 } & 12 / 6\end{array}$ DL810 $12 / 6$
DLS16 30/-
DLS19 30/$\begin{array}{ll}\text { DL819 } & 30 /- \\ \text { DY88 } & 8 /- \\ \text { DY87 } & 6 / 8\end{array}$ DV802
E88CC
12/6
2 ER80C $18 /-$
F180F
E182CC $22 / 6$ E810F $50 /$
EABC80 EABCB $8 / 6$ EAF42
EB91
EM
B/$\begin{array}{ll}\mathrm{ERC}^{2} 3 & 8 / 8 \\ \text { EBC41 } & 9 / 9\end{array}$ $\begin{array}{ll}\text { EBC41 } & 9 / 8 \\ \text { EBC90 } & \text { 1/8 }\end{array}$ EBP80
EBF83
FB
EBF $\begin{array}{cc}\text { EBF89 } & \text { 日/6 } \\ \text { EBL21 } \\ \text { 12/- }\end{array}$

 $\begin{array}{ll}\text { ECO83 } & 8 / 3 \\ \text { ECC85 } & 8 / 1 \\ \text { ECR8 } & 7 / 6 \\ \text { ECP80 } & 8 / 6 \\ \text { ECFP8 } & 8 / 6 \\ \text { ECB }\end{array}$

II $\frac{1}{6}=198$ $\underset{20418}{20418}$

도패픈N

2 CHANNEL AUDIO RECORDER

* 10 watts continuous per channe
* Fully transistorised on 10 printed circuit boards
- 3 head system and 3 speeds 19-9.5-4.75 cms
- Mechanism operated by 4 DC solenoids
- Provision for full remote control

Robust construction and attention to detail make this an outstanding British tape recorder for industrial or domestic use.
Portable 4 speaker version
Oiled Teak surround version

RELIABLE

SHORT CIRCUIT

Send for informative brochure fully explaining.

1. Why a single motor. 2. Electrical performance. 3. Wow and flutter.

MAGNETIC TAPES LTD.

CHILTON WORKS, GARDEN ROAD, RICHMOND, SURREY Tel: 01-876 7957
WW-114 FOR FURTHER DETAILS

STEPHENS
 ELECTRONICS,
 P.O. BOX 26,
 AYLESBURY, BUCKS.

SEND S.A.E. FORLISTS GUARANTEE
 Satisfaction or money refunded.

VALVES

AZ31	9/6	Gz33/7	16/3	UCL83	12/3
DAF91	8/3	KT66	25/6	UF41/2	11/-
DF96	8/3	KT88	32/6	UF80/5	7/6
DF91	9/-	N37	15/6	UF89	8/3
DF96	9/-	N339	25/6	UL41	11/6
DK91	11/6	PC86/8	10/3	UL84	11/-
DK96	11/6	PC900	10/3	UM80/4	9/-
DL92	7/6	PC95	7/3	UY41	8/-
DL94	7/6	PC97	8/3	UY85	6/9
DL96	9/3	PCC84	9/3	U25	15/-
DY86/7	8/-	PCC85	8/6	U26	15/-
DY802	8/6	PCC88	14/-	U191	14/6
EABC80	10/6	PCC89	12/3	U193	8/3
EBC33	11/-	PCC189	12/3	U301	17/-
EBC41	9/6	PCF80	10/3	W729	11/-
EBC81	6/6	PCF82	10/6	2759	24/6
EBC90	9/6	PCF84	9/6	5 Y 3	8/6
EBF80	8/-	PCF86	12/3	$5 \mathrm{Z4}$	9/6
EBF83	8/-	PCF200/1	16/3	6U4	15/-
EBF89	8/-	PCF801	12/3	6 AT6	9/9
EB91	5/3	PCF802	12/3	6AU6	15/6
ECC81	8/-	PCF805	13/-	6AV6	6/6
ECC82/3	8/6	PCF806	12/3	6BA6	9/6
ECC84/5	8/6	PCF808	13/6	6BE6	12/-
ECC88	11/-	PCH200	11/6	6BR7	15/-
E88CC	12/6	PCL82	10/3	6BR8	19/-
ECF80/2	9/6	PCL83	12/3	6BW6	16/6
ECF86	11/-	PCL84	10/3	6BW7	13/9
ECH35	13/6	PCL85	10/6	6CD6G	28/-
ECH42	13/3	PCL86	10/3	6V6G	8/-
ECH81	10/3	PD500	30/6	6×4	7/6
ECH83	8/-	PFL200	14/9	6X5	9/6
ECH84	9/6	PL36	12/9	12AU6	15/-
ECLL800	20/-	PL38	18/-	12BA6	9/6
ECL80	8/-	PL81	10/3	$12 \mathrm{BE6}$	12/-
ECL82	9/9	PL81A	12/6	12 BH 7	14/-
ECL83	11/6	PL81A	12/6	35W4	9/6
ECL86	9/9	PL82	7/3	50C5	12/6
EF39	10/6	PL83	10/3	50CD6G	28/-
EF80	8/-	PL84	8/3	6 F 23	15/6
EF83	10/-	PL500	16/6	6F24/5	12/6
EF85	8/3	PL504	17/-	6 626	8/3
EF86	13/3	PL505	29/-	6 F 28	11/6
EF89	8/-	PL508	20/-	6/30L2	15/6
EF91	8/6	PL509	30/9	10F1	15/-
EF92	10/-	PL800	17/3	10F18 10P13	10/-
EF93 EF94	$9 / 6$ $15 / 6$	PL805	17/3	10P13 10P14	$16 /-$ $19 /-$
EF94 EF95	$15 / 6$ $12 / 6$	PY32	10/-	10P14 20P4	$19 /-$ 20/-
EF183	11/3	PY33	10/9	30C1	10/3
EF184	11/3	PY81	8/3	30C15	13/9
EH90	10/3	PY800	8/3	30 C 17	15/9
EL34	9/9	PY801	8/3	30C18	13/6
EL41	10/-	PY82	7/-	30F5	16/6
EL81	9/6	PY83	10/-	30FL1	12/9
EL84	7/9	PY88	8/3	30FL1 2	17/6
EL95	9/-	PY500	20/-	30FL1 4	13/6
EM81	11/6	PZ30	16/-	30L1	9/3
EM84/7	12/9	R19	13/-	30L15	15/3
EY51	7/6	R20	15/-	$30 L 17$	14/6
EY86/7	7/9	UABC80	10/6	30P12	15/6
EZ40/1	7/6	UBF89	8/-	30PL1	12/9
EZ80	6/6	UBC41	9/9	30P4MR	20/-
EZ81	5/9	UCC85	9/3	30P19	12/9
GY501	14/6	UCH42	13/9	30PL1 3	18/6
GZ30	9/6	UCH81	10/9	30PL14	18/6
GZ32/4	11/9	UCL82	10/3	30PL15	18/6

90\% B.V.A. BOXED (NORMAL GUARANTEE) OR own valves supplied, 1 Year's guarantee. ADD 6d. PER VALVE ON ORDERS UNDER 6, OTHERWISE FREE POST \& PACKING.

CATHODE RAY TUBES

two years guarantee on cathode ray tubes Rebuil

17in.	19 in.	21 in.	23 in.	19 in.	23 in.
$\mathbf{£ 4}$	$\mathbf{~} 4.10$	$\mathbf{f 5 . 1 0}$	$\mathbf{f 6}$	$\mathbf{£ 7 . 1 5}$	$\mathbf{£ 1 0 . 1 9 . 6}$

New
Twin Panel
17in. 19in. 21in. 23in. 19in. 23in. $£ 5.19 .6 \quad £ 6.19 .6 \quad £ 7.19 .6 \quad £ 9.10 \quad £ 9.10 \quad £ 12.10$

Panorama
19in. 23in.
£8.10 £11.10
All types of tubes in stock. Carriage and insurance 15/-

SEMICONDUCTORS

BY127	$\mathbf{2 / 6}$	AC107	$\mathbf{3 / -}$	AD149	$\mathbf{7 / 6}$
AC127	$\mathbf{2 / 6}$	AC128	$\mathbf{2 / 6}$	OC4/5	$\mathbf{2 / 6}$
AF117	$\mathbf{3 / -}$	BC107	$\mathbf{5 / 6}$	OC71	$\mathbf{2 / 6}$
AF181	$\mathbf{5 / 6}$	BC108	$\mathbf{5 / 6}$	OC81	$\mathbf{2 / 6}$
BF181	$\mathbf{5 / 6}$	BC109	$\mathbf{5 / 6}$	OC81D	$\mathbf{2 / 6}$
BF200	$\mathbf{5 / 6}$	AC126	$\mathbf{3 / -}$		
OA79. OA81. OA91. OA95. OA200. OA202.	$\mathbf{1 / 6}$				
Add 5d. per item for Post and Packing for orders under					
24 pieces.					

STYLII

TC8. GC2. GP59. GC8. DC284. Stereo 105. 106. 208. 2/- each (individually boxed).

ST3/5. ST8/9. 9TA. 9TA/HC. GP91. 8/- Diamond
Post and packing 5d. per item for orders under 24
TAPES (Polyester PVC)
4 in. L.P. 8/6 3in. L.P. 5/6
Standard Play
600 ft . 5in. 8/6 900ft. $5 \frac{3}{4} \mathrm{in}$. 10/6 1200ft. 7 in . 12/6 Long Play
900ft. 5 in . 11 /- 1200 ft . $5 \frac{3}{3} \mathrm{in} .13 /-1800 \mathrm{ft}$. 7in. 18/Double Play
1200ft. 5 in . 16/- 1800 ft . 5 予in. 19/- 2400ft. 7 in . 28/Philips type Cassettes. (In plastic library pack) C60 10/6 C90 12/6 C120 19/6

Post and packing 1/6d. on all orders.

ACOS CARTRIDGES

GP91-1 Medium output Mono Crystal 21/-inc. P. Tax GP91-3sc. High output Mono Crystal
(TC8H TC8M BSR X3H X3M) 21/-
GP93-1 Stereophonic Crystal 24/9
GP94-1 Stereophonic Ceramic 31/-
GP95-1 Stereophonic Crystal 24/9 ..
GP96/1 Stereophonic Ceramic 31/6

TERMS, CASH WITH ORDER ONLY. POST \& PACKING PAYABLE ON ORDERS UP TO £3, AFTER THAT, FREE EXCEPT G.R.T.'s.
KING OF THE PAKS Unequalled Value and Quality
SUPER PAKS NEW BI－PAK UNTESTED

Code Nos．mentioned abore are given an a guide to the type of device in
the Pak．The devicee themeelvees are normally unmarked．

BFPEI SENICONDUGTDIS

NEW LOW PRICE TESTED S．C．R．＇S

UNIJUNCTION OT48 Eqt．2NE846．

${ }_{5}^{F}$

宗宣宽

BRA GER
Code
Prk
T1
\qquad
BJ－PAK GuAMIF Misabimu OR MONEY BACK
 HIGHSPEED MAGNETIC COUNTERS $(4 \times 1 \times 1$ in．） 4 dight
$6 / 12 \mathrm{v} .24 / 48 \mathrm{v}$ ．（state which）， $6 / 6$

LEVEL METERS（ $1 \frac{1}{\frac{1}{2}} \times \frac{1}{\frac{1}{2}} \ln$ ．）． 200 micio－amp．Made in PHOTOMULTIPLIERS 6262 and 6262 b ．£15 ea
RELAYS H．D． 2 pole 3 way 10 amp．contacts． $12 \mathrm{v}, \mathrm{w} .7 / 6$ ea． LIGHTWEIGHT RELAYS（with dust－proof covers） SIGNAL GENERATOR（TYDE $7 / 6 \mathrm{ea}$ ．
SIGNAL GENERATOR（TrDe 801A）． $10-300 \mathrm{Mc} / \mathrm{s}$ ．in
4 bands Ext． $50 \mathrm{c} / \mathrm{s},-10 \mathrm{kc} / \mathrm{s}$ ．Output $200 \mathrm{~m} / \mathrm{v}$ ．E50 ee． PRECISION CAPACITANCE JIGS．Beautifully made whth Moore \＆Wright Micrometer Gauge．Type 1.18 .5 pl 1,220 pf £10 ea．Type 29.5 pf－1
POT CORES TYPE LA 3． $10 /-$ ea． 71 WAY PLUG \＆SOCKET（Painton Series 159）Gold plated contacts with hood \＆retaining cllps．30／－pair 50 WAY PLUG \＆SOCKET（U．C．L．miniature）．Gold plated contacts 20／－pair． 34 way verslon $15 /$ pair． LOGIC BOARDS with 31 ACY40s－ 38 diodes etc 20／－ea． P．P．2／6
CO－AX RELAYS（magnetic devices） 1 change－over 12 v．w ELECTRONIC ORGAN BUILDERS．We now have in stock p．C．boards bult to computer standards．Each board is supplied．30／－each．Set of 13 （gives 5 octaves to keyboard） 816.

DIODE LOGIC BOARDS contains 10 diode gating circuits which convert any one
binary code，10／－each．

TRANSFORMERS

L．T．TRANSFORMERS（shrouded）．Pilm．200／250v Sec．20／40／60v． 2 amp．52／6．P．P．7／6．
 $\pm 15 \%$ ．Sec $115 v .2,250$ watts．£15 ea．P．P． $50 / \because$ L．T．TRANSFORMER 60 v .8 amp ．C5．P．P． $15 / \mathrm{m}$
L．T．TRANSFORMER $20 \mathrm{v} .1 .5 \mathrm{amp} .15 / \%$. P．P． $2 / 6$. L．T．TRANSFORMER 20v． $1.5 \mathrm{amp} .15 /-$. P．P． $2 / 6$. L．T．TRANSFORMER Prim． $200 / 250 \mathrm{v}$ ．Sec． $0 / 25 / 35 \mathrm{v}$ ． 30 amp．£7．10．P．P． $20 /$
STEP－DOWN TRANSFORMERS Prim．200／250v．Sec． 115 v ． 1.25 amps ，25／－ea．P．P． $5 /-$ ．
L．T．TRANSFORMERS Prim． 240 v ．Sec． $8 / 12 / 20 / 25 \mathrm{v}$ ． 3.5 amp models $20 / \mathrm{m} ; 5 \mathrm{amp}$ model $25 /$－．P．P． $5 / 6$ ． L．T．TRANSFORMERS Prim．240v．Sec 14 v .1 amp 10／．

COPPPER LAMINATE PRINTED CIRCUIT BOARD
$(8) \times 5 \% \times 5$ ． Also 11×9 in．， $4 /-$ ea．， 3 for 10／－．

ELECTRIC SLOTMETERS（1／－） 25 amp．L．R．240v．A．C 85／－ea．P．P．5／－．\quad QUARTERLY ELECTRIC CHECK METERS， 40 amp 240 v ．A．C．，20／－ea P．P．5／－

ONG LIFE＇＊ELECTROLYTICS（screw terminal） 25,000 u．f． 40 v ．$\left(4 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{In}\right.$ ）． $20 /-$ ea．P．P． $2 / 6$
10,000 u．f． 75 v ．$\left(4 \frac{1}{3} \times 2 \frac{1}{7} \mathrm{in}\right.$ ） $17 / 6$ ea．P．P． $2 / 6$
 EXECUTIVE＂SIXTY＂AMPLIFIER．（ 60 W 8 ohm．）British designed and built．True hi－fl performance． Built－in filters to protect speakers．Three independently mixed inputs．High－Low Impedance．Mic．Crystal－Ceramic－ Magnetic Cartridge，or aux．equipment．E55．P．P．50／－ S．a．e．literature

TELEPHONE DIALS（New）20／－ea．

 RELAYS（G．P．O．＇3000＇）．All types．Brand EXTENSION TELEPHONE（TYP 706） Black or 2 tone Giey 65／．．P．P．5／－ UNISELECTORS（Brand new）25－way 75 ohm． 8$\frac{1}{3}$ wipe $75 /-$

REED RELAYS 4 make 9／12v．（1，000 ohm．）12／6 ea． 2 make 7／6 өв． 1 make 5／－ea．Reed Switches（ $1 \frac{3}{2} \mathrm{in}$ ．）2／．

SUB－MINIATURE REED RELAYS（ $1 \mathrm{ln} . x \frac{1}{2} \mathrm{in}$ ．）．Weigh 4 oz．Trpe 1．960 ohm，3／9v． 1 make．12／6 ea．Tyde 2. SILICON ERIDGES． 100 P．I．V． 1 amp．$\left(\frac{t}{4} \times \frac{t}{z} \mathrm{in}\right.$ ） COMPUTER BOARDS containing 4 thyelstors（C．10681） modern diodes，resistors，capacliors． 10% ea．

ELEGTROALDE

 EVERYTHING BRAND NEW AND TO SPECIFICATION • LARGE STOCKS
BARGAINS IN NEW TRANSISTORS

ALL POWER TYPES SUPPLIED WITH FREE INSULATING SETS

2N696	5/6	2N3707	4/-	AF127	7/-
2N697	5/6	2N3708	3/-	BA102	91-
2N706	2/9	2N3709	3/-	BCl07	2/9
2N1132	$9 / 9$	2N3710	3/6	BCl08	2/6
2 N 1302	4/-	2N3711	$3 / 11$	BC109	2/9
2 Ni 303	4/-	2N3904	7/6	BC147	3/6
2NI304	4/6	2N3906	$7 / 6$	BCl48	3/3
2NI305	$4 / 6$	2N3731	24/-	BCl49	3/6
2Ni306	6/9	2N4058	5/3	BCl5	101-
2N1307	8/9	2N3325	10/9	BC154	11/-
2N1308	8/9	2N3794	3/3	BC157	3/9
2N1309	8/9	2N4284	3/3	BC158	3/6
2N1613	6/-	2N4286	3/3	BC159	3/9
2N1711	7/-	2N4289	3/3	BC167	2/6
2N2218	$9 / 3$	2N4291	3/3	BC168	2/3
2N2147	18/9	2N4292	3/3	BC169	2/6
2N2369A	5/3	2 N 4410	4/9	BC177	$6 / 3$
2N2646	$10 / 9$	$2 N 5192$	25/-	BC178	5/8
2N2924	4/-	2N5195	28/3	BC179	61.
2N2925	$4 / 6$	40361	12/6	BD121	18/-
2N2926R	2/3	40362	16/-	BDI23	24/3
2N2926O	2/3	AC126	6/6	BFI78	10/6
2 N 2926 Y	2/3	AC127	6/-	BFX29	10/9
2N2926G	2/3	AC128	6/-	BFX85	8/3
2N3053	$5 / 6$	AC176	11/-	BFX88	6/9
2N3054	14/3	ACY22	3/9	BFY50	4/6
2N3055	161-	ACY40	4/-	BFY51	4/3
2N3391A	6/3	ADI40	19/-	B5X20	3/9
2N3702	3/6	ADI49	17/6	MJ480	21/-
2N3703	$3 / 3$	AD161		MJ481	27/-
2N3704	$3 / 9$	AD162	616	MJ491	30/-
2N3705	3/5	AFII8	16/6	NKT403	15/6
2N3706	$3 / 3$	AF124	7/6	NKT405	15/-

RESISTORS

Code	Power	Tolerance	Range
c	1/20W	5\%	820-220K Ω
c	1/8W	5\%	4.78-330K
c	1/4W	10\%	$4 \cdot 7 \Omega-10 \mathrm{M} \Omega$
c	1/2W	5\%	$4 \cdot 7 \Omega-10 M \Omega$
MO	1/2W	2\%	$10 \Omega-1 \mathrm{M} \Omega$
C	IW	10\%	$4.7 \Omega-10 \mathrm{M} \Omega$
WW	IW	10\% ${ }^{1 / 20 \Omega}$	$0.22 \Omega-3.3 \Omega$
WW	3w	5\%	$12 \Omega-10 \mathrm{~K} \Omega$
WW	7W	5\%	$12 \Omega-10 \mathrm{~K} \Omega$

$W W=$ wire wound, Plessey.
Values
E12 denotes series: $1,1 \cdot 2,1 \cdot 5,1 \cdot 8,2 \cdot 2,2 \cdot 7,3 \cdot 3$, E24 d, 4.7,5.6,6.8, 8.2 and their decades. $2.4,3,3.6,4 \cdot 3,5 \cdot 1,6 \cdot 2,7 \cdot 5,9.1$ and their decades.
NEW PLESSEY INTEGRATED CIRCUIT POWER AMPLIFIER TYPE SL403A. Oniy $48 / 6$ nett. Operates with 18 V power supply.
Sensitivity 20 mV into $20 \mathrm{M} \Omega, 3$ wates into 7.5Ω Sensitivity 20 mV into $20 \mathrm{M} \Omega$, 3 wates into 75Ω. Supplied compl
for 2 or more.

PE NOV. 69 STEREO AMPLIFIER KIT less metalwork .. $\mathrm{E} 11 / 18 /-$ NET complete
CARBON SKELETON PRE-SETS
Small high quality, type PR: Linear only: 100Ω, $220 \Omega, 470 \Omega, 1 K \Omega, 2 K 2,4 K 7,10 K, 22 K, 47 K$, look, $220 \mathrm{~K}, 470 \mathrm{~K}, \mathrm{IM} \Omega, 2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{M} \Omega$
vertical or horizontal mounting

S-DeCs PUT AN END TO "BIRDSNESTING". Components iust plug in. Saves valuable time. Use components again and again. Compact $1-\mathrm{DeC}^{\prime}$ increased capacity, may be T-DeC
only 50/- post free
WAVECHANGE SWITCHES
IP 12 W ; 2 P 6 W ; 3 P 4W: 4 P 3 W -long SLIDER SWITCOHES
Double pole, double throw

PEAK SOUND ENGLEFIELD KITS

Build it
$12+12$ or $25+25$

Brilliant new styling and available in two forms: STEREO 15 WATTS PER CHANNEL Supplied in kit form with complete amplifier and pre-amplifier modules and power supply components. Output per channel into 15Ω - 13 watts R.M.S. Price $£ 38.9 .0$ Nett

STEREO 25 WATTS PER CHANNEL Supplied in kit form with complete amplifier, pre-amplifier and regulated power supply modules. Output per channel into 15Ω -28 watts R.M.S. Price $\mathbf{6 5 8 . 1 5 . 0}$ Nett Specifications on these amplifiers in accordance with the Specifications in Guarantee published in Peak Sound advertisements.
Inputs:
Magnetic, RIAA 3.5 mV Tape 100 mV Ceramic $\quad 35 \mathrm{mV} \quad$ Radio 100 mV Signal to noise ratios: Better than 60 dB all inputs. ENGLEFIELD CABINET to house either above assemblies (as illustrated) 66.0.0. Nett Other Peak Sound Products as advertised.
ZENER DIODES: Full range of $5 \% 400 \mathrm{mV}$ available in E24
series, 2.7 V to 30 V

COLVERN 3 WATT WIRE-WOUND POTENTIO. METERS: $10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 150 \Omega, 250 \Omega, 500 \Omega$, $1 \mathrm{~K} \Omega, 1.5 \mathrm{~K} \Omega, 2.5 \mathrm{~K} \Omega, 5 \mathrm{~K} \Omega$, $10 \mathrm{~K} \Omega, 15 \mathrm{~K} \Omega, 25 \mathrm{~K} \Omega, 50 \mathrm{~K} \Omega$. Price only $5 / 6$ each

CARBON TRACK POTENTIOMETERS

Double wiper ensures minimum noise level. Long plastic spindles. Single gang linear .. $220 \Omega, 470 \Omega$, IK, etc. to $2 M 2 \Omega \quad 2 / 6$ Single gang log. .. $4 K 7$, IOK, 22K, etc. to $2 M 2 \Omega \ldots . \quad 2 / 6$ Dual gang linear .. $4 \mathrm{~K} 7,10 \mathrm{~K}, 22 \mathrm{~K}$, etc. to $2 \mathrm{M} 2 \Omega \ldots 8$ Dual gang log. .. $4 K 7,10 K, 22 K$, etc. to $2 M 2 \Omega$ Log/Anti-log. .. 10K, 47K, IM Ω only
$\begin{array}{lllllll}\text { Loglal anti-log. } & \text {.. lOK only } & \text {. } & \text {.. } & . & . . & 8 / 6\end{array}$
Any type with $\frac{1}{2}$ amp double pole mains switch .. extra $2 / 3$ Please Note-oniy decades of 10,22 and 47 are available with range quoted.

FETS n-channel

Low cost gencral purpose 2 N5163, 25 volt .. only 5/-each Audio/r.f. Texas 2N3819

- $8 / 6$ each Motorola 2N5457 (MPFIO3)
$8 / 6$ each Motorola 2N5459 (MPF105)
$9 / 9$ each
30 WATT BAILEY AMPLIFIER COMPONENTS
Transistors for one channel $\mathbb{7 / 5 / 6}$ list, with
10\% discount
only 66/11/-
Transistors for two channels $\{14 / 1 \| /=$ list.
only $£ 12 / 7 / 5$
with 15% discount \ldots or channel, Nov. ' 68 circuit list $£ 2$.
Printed circuit board free with each transistor set.
Complete unregulated power supply kit $£ 4 / 17 / 6$ mono or stereo, subject to discount.
Complese regulated power supply kit Nov. '68 circuit 89/5/Further details on application.

MAIN LINE AMPLIFIER KITS AS ADVERTISED. PRICES NET AUTHORISED DEALER SINCLAIR IC. 10 INTEGRATEO CIRCUIT AMPLIFIER AND PRE-AMPLIFIER
This remarkable monolithic integrated circuit amplifier and pre-amplifier is now available for despatch from stock. It is the equivalent of the transistor/18 resistor circuit plus 3 diodes and the unusually wide range of uses all of which are detailed in the manual provided with it.
$59 / 6$ NETT Sinclair products as advertised post free

SCOOP-PA SYSTEM
 Tannoy Youd comprising Control Unit. 4. Tannoy loud hallers, microphone and
headphones, etce. 12 D.c.C. operation.
Low baterry drain. 8 wates power outpus. Low battery drain 8 watts power output.
The ideal system for mobile use, outdoor
 over hundreds of yards. Also has talk back
facility. Guaranteed Brand New in sealed QUANTITIES AVAILABLE FOR EXPORT

CH-FI equipment to suit ETLETY PAMT

Complete range always in stock with special low prices for complete systems and individual units. Two Demonstration
Rooms, HP and Credit Sale facilities and Rooms, HP and Credit Sale facilities and plenty of free advice. New 120
Catalogue covers every aspect,
coses $5 /-$ p.p. 1 bur contains $12 / 6$ single extra discount voucher Order as catalogue ' B '

FRES NEW EOITION. 10 PAGE

* oiscotheque and public address - a specialit

CREDIT SALES (CALLERS ONLY) FOR PURCHASES FROM $£ 30$

PREE 18 PAGETEST EOUIPMEN
QUALITY PANEL METERS

38 SERIES
Face Size $42 \times 42 \mathrm{~mm}$. DC eyo

* DE-LUXE SINE-SQUARE WAVE RC AUDIO GENERATOR

100
200
500
50

PORTABLE GEIGER COUNTERS

ELECTRONIC COMPONENTS

Vast ranse of eransistors, diodes,
valves, tubes, IC's in stock. Free
list No. 36, or see Catalopue A.

- Complete range of components in
stock, including special and hard
to get components.
If you are at all interested in Elec. without a copy of 'Henry's' 350 opare Catalogue 'A.' Price $7 / 6 \mathrm{p} . \mathrm{p} .2 /-$ with
$10 /-$ value discount vouchers.

FREE

To all schools, collares atc. and all
UK's largest stockists of Electronics
for every use. Over 6500 lines in

ELECTRONIC ORGANS

*MODERN ALL BRITISH TRANSISTORISED DESIG
*VENEERED CABINETS FOR ALL MODELS AL9 NOTE, 61 NOTE SINGLE MANUAL DESIGNS ALSO TWO MANUAL 49 NOTE
*KITS AVAILABLE IN SECTIONS AS REQUIRED
*HP and CREDIT SALE FACILITIES
When in London call in and try for yourself.
FREE
NG ORGANSAGE ORGAN BROCHURE COVER WRITE OR PHONE TO ORGAN DEPT. ASK FOR PETER ELVINS.

Taw
 NEWFORIE7O
 BUILD THIS VHF FM TUNER
 SMULLARD TRANSISTORS. $300 \mathrm{ke} / \mathrm{s}$ BANDWIDTH. PRINTED CIRCUIT. HIGH FIDELITY REPRODUCTION MONO AND STEREO. A POPular VHF FM TUner MONO AND STEREO. A popular VHF FM Tuner for quality and reception of mono and stereo. There is no doubt about it -VHF FM gives the REAL sound. ALL doubt about it -VHF FM gives the REAL sound. ALL PARTS SOLD SEPARATELY. TOTAL COST E6.19.6 3 DECODER E5.19.6 ASK FOR BROCHURE NO. 3 (FOR STEREO)

* henelec 'Pa25’ POWER AmPLIFIER

This silicon design uses complementary transistors in the symmetrical output sage, direct coupled to a loudspeaker of 8 ohms impedance or
higher. Power OUtput 1525 watts RMS with an ohm load or 12 watts higher. Power output is 25 water RMS with an 8 ohm load or 12 watts
into 15 ohms, over a frequency range of $15 \mathrm{~Hz}-25 \mathrm{~Hz} \mathrm{3db}$. Cool running is assured by the use of generously dimensioned black anodised heatsinks.
PRICE $\& 7,10.0$

* HENELEC ‘PA50’ POWER AMPLIFIER

Basically similar to the "P A25', the "P A50" will deliver 50 watts RMS to a $3-4$ ohm load. Extra power is handled by complementary triplet circuits using the latest PNP and NPN silicon power transistors. As a
result of extra heatsinking, the 'PA50' runs as cool as the 'PA25'.

* HENELEC MU442 POWER SUPPLY

Designed to run one or two 'P A25's' or one 'P A50' the MU442 connects to the amplifiers by means of plug-on harnesses. No soldering is required the panel of she MU 422.

Speaker plug 80. 80

* Mk.I 100 watts RMS with stabilised power supply overcurrent trip 100 mV ing

THE FINEST SOLID STATE UNITS ALL SILICON BRITISH EQUIPMENT

* SEND FOR FREE BROCHURE No. 25 *

SINCLAIR STEREO $_{73 /-60}$ ${ }_{\text {Stereo } 60} \mathbf{C 8 . 1 0 . 0}$ SPECIAL OFFER Two Z30, P25, Stereo 60 (R.R.P. C23.10.0) 619 withipZ6 in place HENRY'S STEREO OFFAL OFF Two NPA $12 / 3$ or $12 / 15$ so
choice MU24/40 SP 4A (usually 624 to $E 25.10 .0$)

AMPLIFIERS IN STOCK $\begin{array}{ll}\text { PAD } & 7 \text { watt } 3 \text { ohm } \\ \text { MA 7 } & 7 \text { waste } 3 \text { ohm Amp/Pre- }\end{array}$ MA66 $6+6$ wast stereo Amor c8.10.0 (PS20 Power Preamp Unit for any of above 6216 (PS20 Power Unit for any of above 62/6 NPA12/3 12 wats 30 hm NPA12/iS
MMU24/40
p.p.4/.)

MP PREAMPLIFIER MP3 Full function Mono Brochures Nos. 12, 14 and $\ldots \quad$| 66.19 .6 |
| :--- |
| 9.19 .6 |

BUILD A QUALITY 4 TRACK TAPE RECORDER To get the best out of your MAGNAVOX DECK, you need a MAR TIN RECORDAKIT. This comprises amplifier which comes to you assembled on its printed circuit board in fact everything for making a superb Tape Recorder. You need no experience or technical skill to bring this about THE INSTRUCTIONS MANUAL MAKES BUILDING EASY. AND SUCCESS IS ASSURED. Kit comprises phone, $7{ }^{\circ} 1,200 \mathrm{ft}$. tape, and spare spool. NOTHING ELSE TO BUY

HENELEC 5-5 STEREO AMPLIFIER

Excellent low-priced British designed Stereo Ampleflier for use with Record Decks, Tuners.
16 transistor mains operated. Output $5+5$ watts for s-15 ohm. speakers. Black, silver and wood finish,
size 13 in. X Sin. X Sin. PRICE $\mathbb{1} 3.10 .0$. P.p. $7 / 6$. (Leaflet on request.)
Complete Stereo System 5-5
Garrard 3000 LM with static diamond ceramic cartridge, 5-5 Amplifier. Plineh/Cover.
 OTHER SYSTEMS-ASK FOR BROCHURE 16/17. Over 40 specially designed systems, covering all price ranges.

AUDIO EQUIPMENT

 mixing TR, 35 Inputs complete PA Speakers, etc., in stock.

TRANSISTORS

FROM STOCK THE LARGEST RANGE AVAILABLE. COVERING ALL FIERS, ZENERS, LIGHT DEVICES. FREE LIST No. 36 OF OVER 1,000 TYPES ON REQUEST.

TRADE AND INDUSTRIAL ENQUIRIES INVITED

ALSO IN STOCK. TRANSDUCERS C5.18.0 PAIR WITH CIRCUITS RELAYS AND COUNTERS, SOLENOIDS AND ACTUATORS-SEE RELAYS AND
CATALOGUE "A".

Mono or Stereo Audio equipment developed from Dinsdale Mk. Il-ach unit or system
will compare favourably with other proleswill compare favourably with other proles-
sional equipment selling at much higher prices. COMPLETE SYSTEMS AND MIXERS from £ll.12.6 to $\in 38.17 .6$ (all units available separately).
CHOOSE FROM 25 SYSTEMS
THE FINEST VALUE IN LOW-COST HIGH FIDELITY-CHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE YOURSELF POUNOS. Amplifiers 7, 12 and 25 watts, two types of Stereo Preamplifier. Mono Preamp and Mixer Modules.
-SEND FOR BROCHURES No. 12/14 and 21

INTEGRATED MICRO CIRCUITS

9 AND 12 VOLT
STABILISED SUPPLIES
Size approx. Kin. $\times 2 \mathrm{in}$. $\times 1 \frac{1}{2} \mathrm{in}$. Output 100 mA . Transistorised and Zener stabilised. Also unstab. output. UK mad
PS 9009 volt. $45 /-$ p.p. 2/
$\begin{array}{ll}\text { PS } 900 & 9 \text { vole. } 45 /= \\ \text { PS } 1200 & 12 \text { vole. } 47 / 6 \text { p.p. } 2 /\end{array}$
 mod. 50 9TAHC $\quad 88.10 .0$ 3000 LM DIAM $\begin{aligned} & \text { E9.15.0 } \\ & 3500\end{aligned}$ Plineh/cover for $\pm 12.19 .6$ Plinth/cover for model 9916
3000,3500, SP 25, SL65B $99 / 6$ P.P. 6/-.

GERARD TURNTABLES

PLINTHS/COVERS DE LUXE TYPE FOR GARRARD DECKS $£ 8.10 .0$ (STATE MODEL) PAP.

+ STOCK LIST REF $16 / 17$ FREE, IO PAGES ALL HI-FI SPECIAL PRICES

HENRY'S RADIO COMPONENT/EQUIPMENT illustrated catalogue

Continually revised and enlarged. Now 350 pages and equipment for every $\begin{array}{ll}\text { use. Complete with } 5 & 2 / \text { - }\end{array}$ Discount Vouchers for purchases. *Order as Catalogue 'A' Price 7/6, pep. 2/-.
Why not send today! 9th edition, Eth impression. 350 pages.

(1) 1 (ELECTRONICS) LTD.

 LONDON, N.W.9 \& 10 CHAPEL ST., LONDON, N.W.I 01-723-7851

01-262-512

AMERICAN HIGHLY STABILISED POWER SUPPLY UNIT

Regulation between 7-1S voles D.C. at 20 amps. Fitted $0-30$ switch. Buile to a very high specification. Bench or rack mounting. Size $19 \times 8 \times 17$ ins. A. C. input $110 v$. 50 cycles. Ex equip-
ment but guaranted in perfect condition. Maker's price in ment but guaranteed in perfect condition. Maker's price in
cxcess or E200. Our price 629.10 .0 . Carr. $30 /-240 / 110$ volt,
400 watrs, Mains Transformer available if required. 63 extra,
PARMEKO CHOKES NEPTONE SERIES

 JUPITER SERIES SWINGING CHOKE

PARTRIDGE TOTALLY ENCLOSED CHOKES FILLED CHOKES: $12 \mathrm{H}^{2}$. $200 \mathrm{M} / \mathrm{A}$. . $29 / 6$. P. \& P. $7 / 6$.
HADDONS: $12 \mathrm{H} .60 \mathrm{M} / \mathrm{A}$. $10 / 6$. H . P. $5 /=$. T. SMOOTH. HADDONS: $12 \mathrm{H} .60 \mathrm{M} / \mathrm{A} .10 / 6 . \mathrm{P}$. \& P. $5 / \mathrm{L} . \mathrm{L} . \mathrm{T}$ SMOOTH:
ING CHOKE: $16 \mathrm{M} / \mathrm{H} . \mathrm{B}$ amps. $35 /-$ P. \& P. $5 / \mathrm{GRESHAM}$ SWING CHOKE: $20 H$. $100 \mathrm{M} / \mathrm{A}$. 10 H . $450 \mathrm{M} / \mathrm{A}$. 49/6. P. \& P $7 / 6$.

Abstract

SPECIAL OFFER OF SLIDING RESISTORS $30 \mathrm{n} 1-5 \mathrm{~A}$. 11/6. P. \& P. $4 / 6$. Normal geared drive. 782 I I 1 A . 52/6. Carr. 8/6. Single tube fixed $45+1206.5 / 4 A$. 27/6. P. \& P. $6 / 6$. 1 ngle eube adustable $57.2 \Omega 22.8 A, 27 / 6$. P. \& P. $5 / 6$. Single 0.6Ω PA 16 . P.

New and boxed. 75Ω. 3 M . I C. TPE RELAYS 5000Ω I Co. 1 M. contacts. 5/-. P. \& P. $2 /-2000$. \& P. 2/... 1 M. before. B. contact. 6/6. P. \& P. $2 /=500 \Omega 4$ heavy M.

Solve yout communication problems with this new 4-Station Transistor Intercom system (1 master and 3 subs), iń de luxe plastic cabinets for desk or wall mounting. Call/talk/ listen from Master to Subs and Subs to Master. Operates on one 9 v . battery. On/off switch. Volume control. Ideally suitable to modernise Office, Factory, Workshop, Warehouse, Hospital, Shop, etc., for instant inter-departmental contacts. Complete with 3 connecting wires, each 66 ft . and other accessories. Nothing clse to buy. P. \& P. 7/6 in IJ.K.

Same as 4 -Station Intercom for two-way instant con versation from MASTER to SUB and SUB to MASTER. Ideal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire. Battery 2/6. P. \& P. 4/6.

MAINS INTERCOM

No wires-no batteries. Just plug in and it is ready to use. Room to room or house to house. Both units must be on the same side of power line distribution. Lock button. Useful as baby alarm. Price per pair $\mathbf{£ 1 1 . 1 9 . 6 \text { . }}$ P. \& P. 8/6.

NEWMARK SYNCHRONOUS MOTORS

SEND 8d. STAMP FOR

VENNER SYNCHRONOUS BIO-DIRECTIONAL
 spindle stop is placed overall size $21 \times 2 \times$ lifs. x^{2} pindle
length fin. dia. Illeth. An ldeal motor for display. siving a forward and reverse motion. 12/6. P. \& P. 2/6.

CROUZET SHADED POLE MOTORS
 A.C. $115 / 230$ y 10 wates, 1 r.p.m. Overall size 2 lin. dia. depeh Zins. Spindle tin. dia tin.

$0-20$ D.C. 2-mps. M.C. 12/6. P. \& P. 21-. $0-40$ D.C. amps M.C
 A.C. 220.240r. SHADED POLE MOTORS 1,500 r.p.m. Double spindle. Length 0.9 in. and 0.6 in. Overall
size $3 \times 3 / \times 2$ ins. New and Boxed. $10 / 6$. P. \& P. $3 / 6$.

PULLEN SHUNT WOUND 24. D.C. Type 610 H.P. $1 / 75$ REP.m. 3,500 Cons./R.
BURGESS MICRO SWITCHES
 Press Button. 8/6 for three. P. \& P. $2 / 6$.
HONEYWELL 250v. 10A. A.C. Lever
operated. Make or break (3 taks). Three operazed. Make or break (3 tags). Thee
lor $12 / 6$. P. \& P. $2 /=$. Many other types for 12 available.

SCOTCH MAGNETIC TAPE
Type 3 MM 4591 in. 3.60 Ofeet. Supplied new in maker's cartons.

LONDEX PLUGGIN RELAYS
Sealed type, 28 v. D.C. Three healy duky silver contacts. Size
$2 \times 2 \times 1$ in. Complete with base.

Why not increase efficiency of Office, Shop and Warehouse with this incredible De-Luxe Pcrtable Transistor TELEPHONE AMPLIFIER which enables you to take down long telephone messages or converse without holding the handset. A useful office aid. A must for every telephone user. Useful for hard of hearing persons. On/off switch. Volume Control. Operates on one $9 \quad v$. battery which lasts for months. Ready to operate. P. \& P. 3/6 in U.K. Add 2/6 for Battery.
Full price refunded if returned in 7 days.
WEST LONDON DIRECT SUPPLIES (W.W.), 169 Kensington High Street, London, W. 8

TRANSFORMERS
 coils

CHOKES
TRADE ENQUIRIES WELCOMED
SPECIALISTS IN
FINE WIRE WINDINGS
MINIATURE TRANSFORMERS RELAY AND INSTRUMENT COILS
VACUUM IMPREGNATION TO APPROVED STANDARDS

ELECTRO-WINDS LTD.

CONTRACTORS TO G.P.O., LE.B., B.B.C. 123 PARCHMORE ROAD, THORNTON HEATH, SURREY $01-6532261$

CR4.8LZ EST. 1933

Mhadionsparress 13-17 Epworth St., London E.C. 2 Tel: 01-253 9561. Telex: 262341.

CONVERTOR/BATTERY CHARGER. Input 240 v $50 \mathrm{c} / \mathrm{s}$, outjut 12 v 5 amp DC. Input 12 v DC, output 240
AC. 170 watt AC. 170 watt max. With fuse and indicator lampa. $8 i 2$
$9.10 \times 4 t \mathrm{in}$. Welight $191 b$. An extremely compact unit tbat will zive many years' reliable service. Supplied with plug and lead. Only $64 / 10 /=, \mathbf{P}$. \& P. $15 /$. extra. As above fully serviceable-perfect interior but soiled exterior cases. ©3. P. \& P. 15/-. G53/h, Ьганв cager). 66 tal
MULLARD MX 115 GM TUBE with holder.
Platapp 300 volta. $30 /-$ eas. P. \& $3 / 8$.
PHOTOMULTIPLIERS. EMI 6007X at 68/IO/. ea
TRANSISTOR OSCILLATOR. Variable frequene $40 \mathrm{c} / \mathrm{B}$ to $5 \mathrm{kc} / \mathrm{s}, 5$ rolt quare watve o/p. for 68 to 12 V
DC input. Size $11 \times 11 \times 1 / \mathrm{in}$. Not encapsulated. Brand DC input. Size $11 \times 11 \times 1 \mathrm{fin}$. Not encapsulated. Brand

ONE ONLY RACAL RA 17 Receiv

CRAMER TIMER 28V DC Sweep $1 / 100$ th sec \& sweep
00 secs. $4^{\text {a }}$ dial. Remote eontrol stop/start reset 26.10.0
Omron/Schrack RELAYS
al baser piug-in relays. 2 pole c/o GA, GV only. Brand new. Boxeri. $1 / 6$ eh.
G.E.C. 4 pole e/o $6 / 12 v$ operation 180 ohms. Platinum contacta. Brand new. Boxed $12 / 6$ ea.
Min. VARI.EY type VP4. 4 pole c/o 15 K/ohm. Brand new $4 / 6$ er.
Min. S.T.C. 4 -pole c/o $7.5-18 \mathrm{~V} .185$ obms. Brand new
bored. 8/: ea. $6 /=$ eat. per 100 .
8.T.C. Fealed 2 pole c/o 48 V. 2.500 ohn $3 / 6$ eat. 12v $7 /-$ ea

CARPE NTERS polarised Single pole c/o 20 and 65 ohm coil as new, complete with buse $7 / 6$ ea. Single pole c/o $680,1.110$ and 1.570 ohm coil. As new $6 / 6$ ear
Brand New. Sinkle Pole c/o (tspe $5 A 2$), 2×1200 ohms. 8/6 ea. POTENTIOMETERS
COLVERN Brand new. 5: 10; 60; 100; 250; 500 COLVERN Brand new, ja $10 ; 60$; 100; 250 : 500
ohms; $1: 2.5 ; 5 ; 10 ; 25 ; 50 \mathrm{k}$ all at $2 / 6$ ea. Special Brand new MORGANITE 250 K 1 in . gealed. Nomal price 9/-, our jurice $3 / 6$ eat
INSTRUMENT 3" Coivern. 5; 25: 100 ohms: 2.5 All at 7/- ea
TRIM POTS. Paignton-solder lugs 5,10 \& 25 K at 5/- each t Pins 10; 20; 50; 100; 200; 250; 500 ohms: 2.5: 25 ant 50 K at $10 /-$ each

DARSTAN-premet-gealer f" dia, i high. 1:2 and 5K J/6
HIGH RESOLUTION 25 K 80 turns. Complete with knob 6/6
ALMA precision resistors 100 K ; 400 K ; and $998 \mathrm{~K}-0.1 \%$
5/6 ea. $3.25 \mathrm{~K}-0.1 \%$ 4/- ea.
DALE heat sink sealstors, jon-Inductlve 50 watt. Brand new. 15 ohms- 6,6 ean. $8.2 \mathrm{~K} ~ 4 / 6$ en. Excellent dummy

Wheatatone Bridge by TINSLEY tyne 1138 £75. CAPACITORS
ERIE feed through ceramicons 1000 pf -9d, ea. $2 / 6$ eat gulb-min. TRIMMER 1 square. B. Spf. Brand new $2 / 6$ aat
Concentric TRIMMER $3 / 30$ pf. Brand new $1 / 6$ eat. DUBILIER Efectrolytic. $32+32+16 \mathrm{mfd} .350 \mathrm{~V}$. D.C. Brand new. $4 / 6$ ear. $3 / 9$ ea. per doz.
VISCONOL EHT, Brand new $0.000525 \mathrm{kV}, 16 /$ e ea. E.H.T. 0.02mfil $8 \mathrm{KV} \cdot 6 / \mathrm{e}$ ea. 0.1 mfd 2.5 KV . nitrogel/6 ea.; $0.5 \mathrm{~m} / \mathrm{d} 5 \mathrm{KV}-11 /$ - ca.; 0.0 ámfd $10 \mathrm{KV} \longrightarrow 7 / 6$ ea.;
GEARED MOTORS $240 \mathrm{v} 50 \mathrm{c} / \mathrm{g}$ synchronous. Geared DIODES 1 N914. Hrand new $1 / 3$ ear:; $12 /=$ doz.: $\subset 4-100$; DIODES 1
E25-1,010.
PHOTOCELL equivalent OCP $712 / 6 \mathrm{er}$
BURGESS Micro Switchea V3 5930. Brand new $2 / 6$ ea. BULGIN panel mounting lamp holders. Red. Brand MINIATURE SPEAKERS 15 ohm 2in. diameter.
Brand new. $7 /=$ ear. P. \& P. o/6 eat.
BRAND NEW BCII4 TRANSISTORS. 5/- ea:
BRAND NEW BCII4 TRAN
TRANSISTORS BC 114-NPN Low noise high graln audio. etc.: BC 116-PNP General purpose 200 me/s lead length. 2/-ca.

NUCLEONIC INSTRUMENTS

SCALER type 1009 by Dynatron. Suitable Betal able discriminator. Read out 2 decade neons and 4 lluit counter. Bupplled in as new condition at $E 5$ ea. Carr. 30/-
Hew only
Few only RATEMETER tyme 116113 Complete with bult in EHT supply. Separate metering EHT and 3 kv . As new 635 . Carr, $30 /$. Portable delser Counter in haversack, complete 65 th. P. \& P. $10 /$ PULSE HEIGHT analyaer type
100 CHANNEL PULS 100 CHANNEL PULSE HEIGHT analyser type
130313 As new 75 . As niove but tyin 1363 C - fi20.
ECKO PULSEHEIGHTANALYSER type N10i E25. CAIT. 30/\% Digplay unit type NIS 2z3. 620. CINTEL Transigtorised Nucleonic scater with adjustable difarlminator. A meter display on-9 glving
count of 10 to the 5 . New Comiltion. Now ONLY $\& 18$. CUMLSE Gencrator type 1147 A . 66. Carr. 30/.

TEST GEAR

E.M.I.
 OSCILLOSCOPES

WM 2 DC-13 me/s $£ 35$
SOLARTRON 7118.2 D.B. DC- 0 m.c/s $\mathbf{6} 60$
SOLARTRON 643 DC- 15 mols NOW only 665 SOLARTRON 513/623 DC- $10 \mathrm{mc} / \mathrm{s}$ £35 SOLARTRON 568 DC- $6 \mathrm{mc} / \mathrm{s}$ € 18
COSSOR $\quad 1035$ DB. $£ 20$
COSSOR 1049:1049 Mik. 3. DB. E22/10 and
A11 carefuly checked and tested. Carriage 30\% extra MARCONI
TF 858 (CT44) Audio Fren. Wattmeter E15. Carr. 101 TF 888 Marnification Meter $£ 45$ Carr. £1 TF 762 C UHF Generator ± 40 Carr. ${ }^{\text {ct }}$
TV 369 N. 5 Imperdance Bridge 655 Carr. 30/.
TF $144 G$ Slgnal Generator. Serviceable, Clean 615
TV 885 VIdeo Oscillator 8 ine/ square $£ 35$ Carr. $30 /$ -

TF $1343 / \mathrm{D}^{6} \mathrm{X}^{\circ}$ Band gen. 635 Carr. $30 /$
TF 428B/2 Valve voltmeter $\mathbf{1 8}$ (arr. (arr. $10 /$.
Type 801 Sig. Gen. $£ 35$. Carr, $30 / \mathrm{F}$.
TF ${ }^{\text {03 }} 791 \mathrm{~B}$ CM Deviation Meter $£ 25$. Carr. 30/-
SOLARTRON
Pulse generator POS $100 \mathrm{C} 50 \mathrm{c} / \mathrm{s}-1 \mathrm{mc} / \mathrm{e} £ 18 \mathrm{Carr}$. \&1
Carr. £1
Stabilised P.U. SRS 151 A $£ 20$ Carr. 30/
Stabilised P.U. SRS 152 E15 Carr. 30/- 6 (rarr. 10/-
 AVO
Textmeter No. 1 fl4 Carr. 15 . Omplete fl Cart. \& 1 SPECIAL by G. \& E. BRADLEY. Multimeter type CT471B. Battery operated, fully translstorigerl. sensitlvity 100 M ohm/V, mensuires r.c./d.c. voltase
$(12 \mathrm{mV}-1200 \mathrm{~V}$ scales. $\{12 \mathrm{mV}-1200 \mathrm{~V}$
a.c./d.c. current (12 microA-1.2A scales, $+/-3 \%$ scales. $+/-3 \%$ m.s.d.), h.f./vhf/uhf. voltage with
multiplier
$(4 \mathrm{~V}-400 \mathrm{~V}$ scales up to 50 MHz 40 mu . 4 V multiplier (4V-400V acales up to $50 \mathrm{MHz} ; 40 \mathrm{mV}-4 \mathrm{~V}$
up to 1000 MHz). Brand new. Few only. $£ 60$ Carr.
$30 /$. 30)/

CINTEL

Wide Range Capacitor Bridge $£ 25$ Carr. $15 /-$
Slue and l'ulse Generator type 1873 € 25 Carr. 15/AIRMEC
Vaive Millivoltmeter tywe 264. 3MV-1V $\mathbb{2 0}$ Carr. \& Counter type 865.6 decaules. Bright Vertica! display

OSCILLOSCOPE CAMERA. Shackman 25ft. Exp 270 framen. Times from $1 / 250$ to 1 seca. muto. Daluere Fi. 9 Focal $1 f \mathrm{in}$. with standard 4 in . to 5 in . fitting. 630 .
Chart Recorder. American Optical DC:(N) cps Differential input 2.5 mes ohms, Chart speed $1,5,20,101 \mathrm{~mm} / \mathrm{Sec} . \mathrm{I} \%$ BAP 3750 . Sensitivity 50 millivolt per
300 yolts nax. Brund new condition $f 100$.
E.H.T. Base B9a in Polystyrune holfler with cover Brand new. 2/6 ead
ZENITH E.H.T. Tepter, whith Proles. Metered 0.3 .5 kv .
DVM \& RATIOMETER BIE 2116 by Blackburn DVM
DENCO S Jand low molse truvelling Wave amplitier SIGNAL Generator CT 53. Complete with leads. Good condition tio

FREQUENCY Meter LM 14. Modulated verslon of SPECIAL. FURZEHILL V200 Valve millivolt meter. 10 mv 6 1 kV 625 Cart
FURZEHILL Valve Voltmeter type 378B/2. Range $0-80$ dilxs \& 10 millivolts to 100 Volts in 5 ranges. Size
$11 \times 81 \times 7 \ln \in \mid 2$. Carr. 15%. MIC-O-VAC type 22 (CT54) Volts; Current; Ohms DC to $200 \mathrm{mc} / \mathrm{s}$ with prole. leauls etc. As new $C B / 10 / 0$ P. \& P. 10/-

VIBRATING REED ELECTROMETER Iype N 572 by ECKO. Range 10 to the -14 . Max sengiti
SHORTS ANALOGUE COMPUTER. Complete
Information avadable. Flne condillon $\mathbb{E} 80$ en.
As above, complete, bot serviced. 675 ea.
Also large quantity spares atvailable. Carriage at cost. DISTRIBUTED AMPLIFIER tyIe $2 C / 350 \mathrm{c} / \mathrm{s} 100 \mathrm{mc} / \mathrm{s}$ Gain 300. 630 each

2 $100 \mathrm{mc} / \mathrm{s} 16$ each
DAWE Wide Range oecillator type 400 A .20 cs to $20 \mathrm{kc} / \mathrm{s}$
Sine wave. 500,600 and 2000 ohm. Fine condition. E 25 .
Sine wave. 500,600 and 2000 ohm. Fine condition. 625

MUIRHEAD type D729 AM. Phase meter. As new condition. in transit cases. 160
PAIGNTON ATTENUATOKS 0.1 db . to 100 db . In 3 decades, 600 ohm, 19° rack mounting. 620 ea. Carr. 15/. PISTON ATTENUATOR in carrying case, 30-140 me/s calibpated 0/70 db. C10 ea. Carr. \&1
Prectsion THERMOSTOR by YSI. 100 k , at $25^{\circ} \mathrm{C}$. Range: $40^{\circ} \mathrm{C}$. to $180^{\circ} \mathrm{C}$. Suppled with charts giving ohms for each delree over entire range. 1 rand new. 62 eis. ADVANCE Slaniu Generator type D1. 2 mc/s to 190
me/g. Sine and muare mod. With original chirts. Excelme/s. Sine and guare mod. With original cbarts. Excel-
SERVOMEX. Stabilized D.C. Power unit. Type 38. and current meters $£ 25$.
PYE BASE Station 250 W complete with modulator \& speech ampe etc. At 6.12 V receivers. Present freq. cover ture $90 / 100 \mathrm{mc} / \mathrm{s}$. The lot f 120 .
HOLGATE 6 channel Event recorder. 1 in . or 101 m . luchees per second. Slze if $\times 5 \times 8 \mathrm{ln}$. Excellent condition. E20.
HEWLETT PACKARD Recorder and Decoder type 20110. As new. Write or phone for further detatle. 19in. Rack Mounting CABINETS 6ft. high 2ft. deep. and wheels $£ 12 / 10 / 0$ Garriare st coet MULLARD Transistorised Analogue vertor Model L 281 . As new. $£ 20$ Carr. 15/- Dlgital Con SUNVIC DC chopper Ampltter type DCA 1. Superb onndition. $\mathbf{1 2 2 / 1 0 / 0}$ ea. Carr. 20/-
CINTEL microsecond chronometer $\mathbf{6 2 0}$. Carr. 30/. CINTEL Unlversal Counter 630. Carr. 30/
PROCESS TIMERS 8 individual timer circuite each with 0.100 sec calibratad dials. Idead displays, ISOLATING TRANSFORMERS 240 V in 240 V 7 KVA out. As new. $£ 25$ ea. Cart. £2/10/
DESK Telephones. Current type. Standard dial. 3 wire red. green, white. Ideal extenssons etc. As new $£ 3$ each Sume but older type $17 / 6$ each. P. \& P. $5 / \cdot \%$ in. Drilled DIECAST AI.L OY boxes. Slze $4 \times 21 \times 1 \| \mathrm{in}$. Drilled ends for Belltig Coax socket. 3 c
between. $6 / 6$ tach. P. 8 P . $2 /$.
CONVERTOR $50 \mathrm{c} / \mathrm{s}$ alngle $\mathrm{ph} . ~ t o ~ 400 \mathrm{c} / \mathrm{s} 3 \mathrm{ph} .250 \mathrm{w}$

METERS

TAYLOR 100-0-100 Micro antp scaled size $4 \times 2^{\circ}$ with intermal lamp scaled $0 \cdot 0 \cdot 6$ 1/19/0 ea.

4 DIGIT RESETTABLE COUNTERS. 100w ohm coll. Size $1 f \times 3 \times 4$ in. As new, by Sorleco of Geneva. $\mathbf{4 2 / 1 0 / 0 \text { each }}$
As above but 350 ohm . $£ 3 / 10 / 0$ ert
TRANSFORMERS. All standard inputs.
STEP DOWN ISOLATING trank, Standard 240 F As to leov lapped 60.0
75 WATT Constant voltarge transformer. 105 to 255 volto-ay out. $30 /$ each. P. \&. P. $5 /-$.
MODULATION trans. PP-
BWb. 30/ each. M. \& 1 P. 5%

Tranaformer $0.215-250120 \mathrm{MA} ; 6.3 \mathrm{~V} 4 \mathrm{~A}$ CT $\times 2.2 \times 6.3 \mathrm{~V}$
$0.5 A$ and sebarate $90 \mathrm{v} 100 \mathrm{MA} 25 /-$ each P is P, $4 /$.
Matching contact cooled bridge rectifte
$\mathbf{9 5 0 - 0} \mathbf{3 5 0} 75 \mathrm{~mA}, 5 \mathrm{v} 2 \mathrm{mmpe} \times 2,21 /-$ ea.
Gardners $6.3 \mathrm{v} 2 \mathrm{~A} ; 6.3 \mathrm{v} 1.5 \mathrm{~A} ; 6.3 \mathrm{v} 0.1 \mathrm{~A}$. $8 \mathrm{ize} 3 \times 1 \mathrm{i} \times 4 \mathrm{tn}$. As new. $9 / 6$ ea. P. \& P. 9/- ea.
Parmeko/Gardners. Potted. 475-60-0-60-475 at 160 mA : erarate winding $215-0215$ at $45 \mathrm{~mA} ; 6-3 \mathrm{v}$. 5 A : $6-3 \mathrm{v}$ -75A: 5 v 3 A . As new. 63 en.
Gardnew/Greaham. Potted 430-400-0-400-450 180 ma : $0-4-6.33 \mathrm{~S} \times 2 ; 0.4-6.34 \mathrm{~A} ; 0-4-5 \mathrm{~V} 3 \mathrm{~A}$. In orixinal boxes
64 efa. incl. postare.
Garlners 2 kV 10 MA and 4 volts $\times 2$. $64 / 10 /=$ ea incl. ostage
Purmeko 65v 1 amp . Separrute $0-18-24 \nabla$ at $0-5 \mathrm{amp}$. 30/-ca. Mard/Pirm/Part. $450-400-(1)-400-450$. $180 \mathrm{MA} .2 \times 6.3 \mathrm{ea}$. 3 ea
ADVANCE Constant Voltace Trans. 3KW 650. Also . 5 revalable $\mathbf{6 3 0}$
ADVANCE Constant Voltage Trans. 6 volta 50 watt. Grandners 5v 3oamp. Brand new $\mathbf{f 1 / 1 0}$ each incl. vostruge. CHOKES. $5 \mathrm{H} ; 10 \mathrm{H} ; 15 \mathrm{H}$; up to $120 \mathrm{~mA}, \mathrm{~B} / 6 \mathrm{ea}$. Dp CHOKES, $5 \mathrm{H} ; 10 \mathrm{H}$; 15 H ; up to $120 \mathrm{~mA}, 8 / 6$ ea. Dp
to 250 mA i2/6 ea. Large quantity LT, HT, EHT transformers. Your reauirements, please. Panel switches DPDT ex ea, $2 / 6$ ea.: DPST Brand new brand new 6/- ea
SPECIAL. 813 valves. Brand new, boxed $\mathrm{E2/10/0}$. PRECISION continually rotarable stud switches,
gingle pole. 80 way, can be stacked if required. $f 3$ ea, Pingle pole. 80 way, can be stacked if required. 63 ea, PRECISION rotary stud switchea 2 wole 12 W size 2° M.. $\frac{2}{}$ shaft. 22/10/0 ea.

Min. SEALED \& pole 3 way and 3 mole 4 way rotary
switches, $t^{\prime \prime}$ shaft $f^{\prime \prime}$ dia. $\times z^{2} 10 /-$ ea.
Must go-American Prensure Gauges. Scaled 0-200/
$0-2800$, Psl/KSC: 270° dial 5°. 22/6 ea. P. \& P. $5 /$. . Solartron Storafe. Oscilloscone type QD 910. MUST 90.

FOR CALLERS. Always a large quantity of components, transformers, chokes, valves, capacitors, odd units, etc., at 'Chiltmead' prices. Callers welcome 9 a.m. to 10 p.m. any day.

22 Sun Street • Reading • Berks . Tel. No. 65916 moving to 7-9-11 ARTHUR ROAD, 300 yds. east (rear Tech. College) Tel. No. 582605

A WIDE SELECTION OF SERVOMOTORS NOW AVAILABLE INCLUDES THE FOLLOWING TYPES:
Mil sixe $11-400 \mathrm{~Hz}$ versions for 26 and 115 sv , operation with MIl size 08 , 10 , 11 , 15 and 18 motor senerators for 400 Hz M11 size
operation with
with
26 11 and ind 15 , 18 motor generators for 400 Hz Mil size 08,10 , 15 and 18 two phase servometers also avail-
 Mil Pormanent Masnee Field Sorvometors Slxe
15 and 18 with supply voltages from 68 Sov. D.C. 15 and 18 with supply voltages from 6 to 50 v . D.C. Mil Tachogenerators size o8 and 10 for 100 Hz supply,
 All item
prices.
Evershed and Vignoles' Servomotors and Servomotor-generators-we hold stocks of this well known manufacenquiry stating yourt broad design considerations will bring a reply by return indicating ex stock availabillty of the motor most nearly meeting your requirements.
Write for our Data Sheets A 131 onwards for details of
MIL SYNCHROS available ax etock in sizes 09, 11, 15, 16 , 18 and 23 1or 50 , 60 and 400 Hz operation.
Synchro Conerol $\begin{gathered}\text { Synchro Contincmart } \\ \text { Control Transmitter }\end{gathered}$
Synchro Control Differential Transmitters
Synchro Torque Transmitters and Receiver Synchro Resolvers
Equivalent MAGSLIP ELEMENTS more suitable for educationa MAG
Write for our Data Sheetz A OOI onwards for Synchro 400 Hz MOTOR ALTERNATOR SETS Input $400 / 440 \mathrm{y}$ 50 Hz 3 ph . output 115 v .400 Hz ISOVA. (coml. rating) for 50 Hz 3 ph, output 115 v .400 Hz 150VA. (coml. rating) fo

PRECISION POTENTIOMETERS
Numerous instrument types, continuous rota tion potentiometers for control application and HELIPOTS in stock. List on application.

Geresch COMPLEX RATIO BRIDGE Model CRB2B Six digits in phase, four digits in quadrature. Our Price $\mathbf{C 2 0 0}$

DRY REED INSERTS
Overall length 1.85° (Body length 1.1 ? Diamezer 0.14° so switch 500 mA at up to 250%. D.C. Heavily gold clad contacts
12/6d. per doz., $75 /$ - per 100 , 27.10 .0 per 1000 for quantities over 1000 , 625.0 .0 per 1000 for quantitles over 10,000 All carrlage pald.
REED RELAYS Low voleage 200 ohm coll, 4 make contacts /6d. each (P. \& P. I $/$). Send for our list of several other FAST SWITCHING LOGIC DIODES CV8617 (BAY 38), CV8790 (OA202), IS921 (Gen. purpose) coded devices in manufacturers' packs: $\mathbf{6 2 4}$ per 1000 . Reduction for quantitles RANSISTORS Manufacturers' quantities of the following aties $100-999$ 2/-0. ea., $1000-49991 / 9 \mathrm{~d} .$, over $5000 \mathrm{I} / 7 \mathrm{~d}$. ea. CAMBRIDGE DYNAMOMETER VOLTMETERS in new condltion. 10 rango up to 150 v . in as new condition NOISE GENERATOAS
NOISE GENERATORS CT82 $15 \mathrm{KHz}-160 \mathrm{MHz}$ into 43 OSCILLOSCOPES Solartron Type CDS68 C27.10.0. Fully serviced.
EVERSHED 500 v . WEE MEGGER in leather case. Fully EVERSHED 500 v . WEE MEGGER in leather case. Fully
checked $\mathbf{~} 14.0 .0$ (Carr. Pd.).
PLUGS. SOCKETS AND CONNECTORS
Large stocks of PLESSEY Mk. IV or VI, 104; PAINTON ELECTROMETHODS; CANNON; BELLING LEE AMPHENOL: TRANSRADIO items

Enquiries to Orpington or Lydd.

G.E.C. SEALED RELAYS

A very wide range of these difficult-to-obtain items in stock. List available.

$\delta_{\text {ervo and }}$ Electrrenic Sales $\mathcal{L}^{t d}$.

Electrical and Servo Control Engineers - Electrical Suppliers - Engineering Stockises. Aeronautical Suppliers 43 HIGH STREET, ORPINGTON, KENT. Phone: Orpington 31066/33976/33221 19 MILL ROAD, LYDD, KENT (Works). Phone: Lydd 252
67 LONDON ROAD; CROYDON, SURREY (Retail Branch and Instrument Repairs). Phone: 01-688-1512 (Croydon)

PRESENTING

THE AUDIO $\mathcal{E}_{\text {xecutive }}$ SIXTY
A high output all-silicon AMPLIFIER of advanced design Wo have incorporated into an amplifier all the desirable eaveral years experience of selling amplifiers-we now have design incorporating the latest solid state all-silicon circuitry and the result is- AUDIO EXECUTIVE SIXTYI
This creation, while being reasonably priced, provides the ollowing desirable features:-

A true 60 Watt R.M.S continuous rating into 8 ons.
True High Fidelisy Performance.
4. Three independensly mixed inpuss which can be high or low impedance microphone, crystal ceramic or magnetic artridge from disc, or from tape, zuner or other The amplifier is built into uilzed plaseic conted a luxurious, supple black semiy 1 massive heat sink carrying the output chassis, backed jacks, output sockers. mains voltage adiuster, mains and output fuses, carries the driver transistor mounted on their own substantial heat sink, the input and output controls and he on/off switch. The power supply components are mounted direct on the sturdy chromatised cadmilum plated chassis. Giscotheques. Systems. Hocal and Gigh Hifi Systems. tion.
Price 258.15 .0
Guaranteed for six months. Individually packed in car.
tons. SPECIFICATION
Power Output: 60 watts continuous sine wave into 8 ohms (resistive). ${ }^{40}$ wates continuous sine wave into is ohms (resistive). 5A luse incorporated in output circuit. Damping Factor: 30 (source impedance 0.5 omm approx.). into 8 ohms less than 1%, at 40 watts into 15 ohms less than
0.3%.
Frequency Response: $\pm 1 \mathrm{db} 40 \mathrm{~Hz}$ to 15 KHz .
Hum and Noise: -70 db .
Sensitivity: Input Ia $15 \mathrm{mv} Z=50 \mathrm{~K}$ ohms flat.
Ib $1.5 \mathrm{mV} Z=5 \mathrm{~K}$ ohms flat.
Input $2 a 4.5 m V Z=50 \mathrm{~K}$ ohms RIAA compensated.
Input $3200 \mathrm{mV} Z=100 \mathrm{~K}$ ohm. flat.
Inputs 1 and 2 and 3 operate simultaneously offering full mixing facillties: choice of either a or b inputs, outomatically disconnects the other. Alteration in level from any two
inputs on altering the third from zero to maximum is typically inputs db. altering the third from zero to maximum is cypicaly Overload Capacity: Input 126 db . Input 226 db . Input 3 Power Bandwidth: -3 db . (8 ohms) $50 \mathrm{~Hz}-18 \mathrm{KHz}$. Tone Control: Bass +13 db to 16 db at 50 Hz Filters:-I db points at 40 HZ and 15 KHz . Mains 5upply: $\begin{aligned} & 110.120,220.240 \mathrm{~V} \\ & \text { Input fused at } 2 \mathrm{~A} \text {. }\end{aligned}$

LATEST RELEASE OF

RCA COMMUNICATION RECEIVERS AR88

BRAND NEW and in original cases-A.C. mains input. 110 V or 250V. Freq. in 6 bands $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$. Output impedance $2.5-600$ ohms. Complete with crystal filter, noise limiter, B.F.O. H.F. tone control, R.F. \& A.F. variable controls. Price £87/10/each, carr. £2.
Same model as above in secondhand cond. (guaranteed working order), from $£ 45$ to $£ 60$, carr. $£ 2$
*SET OF VALVES: new, $£ 3 / 10 /$ - a set, post $7 / 6$; SPEAKERS: new, $£ 3$ each, post $10 /$-. *HEADPHONES: new, $£ 1 / 5 /-$ a pair, 600 ohms impedance. Post 5/-.
AR88 SPARES. Antenna Coils L5 and 6 and L7 and 8. Oscillator coil L55. Price 10/- each, post 2/6. RF Coils 13 \& 14; $17 \& 18 ; 23 \& 24 ;$ and 27 and 28 . Price $12 / 6$ each. $2 / 6$ post. By-pass Capacitor K.98034-1, $3 \times 0.05 \mathrm{mfd}$. and M.980344, $3 \times 0.01 \mathrm{mfd}$., 3 for $10 /-$, post $2 / 6$. Trimmers $95534-502,2-20$ p.f. Box of 3, 10/ , post $2 / 6$. Block Condenser, $3 \times 4 \mathrm{mfd}$., 600 v ., £2 each, 4/- post. Output transformers $901666-50127 / 6$ each, 4/- post.
Available with Receiver only.
S.A.E. for all enquiries. If withing to call at Stores, please telephone for appointment.

Abstract

HRO RECEIVER．Model 5T．This is a famous American High Frequency superhet，suitable for CW，and MCW，reception crystal filter，with phasing control．AVC and signal strength meter．Complete HRO 5 TSET（Receiver， Set of 5 Coils \＆Power Unit）for $£ 27 / 10 /-$ ，carr． $30 /-$ ． COMMAND RECEIVERS；Model $6-9 \mathrm{Mc} / \mathrm{s}$ ．，as new，price $\mathrm{E} 5 / 10 /-$ each， post 5／－． COMMAND TRANSMITTERS，BC－458：5．3－7 Mc／s．，approx． 25 W output，directly calibrated．Valves 2×1625 PA； 1×1626 osc．$; 1 \times 1629$ Tuning Indicator；Crystal $6,200 \mathrm{Kc} / \mathrm{s}$ ．New condition－ $\mathbf{8} / 10 /-$ each， $10 /-$ post． （Conversion as per＂Surplus Radio Conversion Manual，Vol．No．2，＂by R．C．Evenson and O．R．Beach．） AIRCRAFT RECEIVER ARR．2：Valve line－up $7 \times 9001 ; 3 \times 6$ AK5；and $1 \times 12 \mathrm{~A} 6$ ．Switch tuned $234-258 \mathrm{Mc} / \mathrm{s}$ ．Rec．only $\mathrm{E} 3 \mathrm{cach}, 7 / 6$ post；or Rec． with 24 v ．power unit and mounting tray $\mathbf{~} 3 / 10 /-$ each， $10 /-$ post． RECEIVERS：Type BC－348，operates from 24 y D．C．，freq．range 200－500 $\mathrm{Kc} / \mathrm{s}, 1.5-18 \mathrm{Mc} / \mathrm{s}$ ．（New）£35．0．0 each；（second hand）$£ 20.0 .0$ each，good condition，carr．15／－both types． MARCONI RECEIVER 1475 type 88； $1.5-20 \mathrm{Mc} / \mathrm{s}$ ，second－hand condition £10．0．0 each．New condition £25．0．0 each，carr．15／s， RACAL EQUIPMENT：Frequency Meter type SA20：£35 each，carr．£1． Frequency Counter type SA21：£65 each，carr．30／－．Converter Frequency Electronic VHF Type S．A． 80 （for use with the SA．20）： $25 \mathrm{Mc} / \mathrm{s}-160 \mathrm{Mc} / \mathrm{s}$ ， $\mathbb{E} 40$ each，carr．£1．

ROTARY CONVERTERS：Type 8a， 24 v D．C．， 115 v A．C．＠ 1.8 amps， 400 chs 3 phase，$\Sigma 6 / 10 /-\mathrm{each}$ ， $8 /-$ post． 24 v D．C．input， 175 v D．C．$@$ ． 40 mA output，25）－each，post $2 /$－．

CONDENSERS： $150 \mathrm{mfd}, 300$ v A．C．， $87 / 10 /$ each，carr． $15 /$ ． $40 \mathrm{mfd}, 440 \mathrm{v}$
 $15 \mathrm{mfd}, 330 \mathrm{~V}$ A．C．wkg．， $15 /-$ each，post $5 /-.10$ mid， $10 \mathrm{mfd}, 600 \mathrm{v}, 8 / 6$ each，post $5 /-.8 \mathrm{mfd}, 1200 \mathrm{v}$ ， $12 / 6$ each，post $3 / . .8 \mathrm{each}$ mid， 600 v ． $\mathbf{8 / 6}$ each，post $2 / 6.4 \mathrm{mfd}, 3000 \mathrm{v}$ wkg．， E 3 each，post $7 / 6.2 \mathrm{mfd}, 3000 \mathrm{v} \mathbf{~ w k g . , ~} \mathbf{~} 2$ each，post $7 / 6.0 .25 \mathrm{mfd}, 2 \mathrm{Kv}, 4 /$－each， $1 / 6$ post． 0.01 mfd ．MICA 2.5 Kv ．Price
E 1 for 5 ．Pos $2 / 6$ ．Capacitor： $0.125 \mathrm{mfd}, 27,00 \mathrm{v}$ wkg．$⿷ 3.15 .0$ each， $10 /-$ post．

OSCILLOSCOPE Type 13A， $100 / 250$ v．A．C．Time base $2 \mathrm{c} / \mathrm{s} .750 \mathrm{Kc} / \mathrm{s}$ ． Bandwidth up to $5 \mathrm{Mc} / \mathrm{s}$ ．Calibration markers $100 \mathrm{Kc} / \mathrm{s}$ ．and $1 \mathrm{Mc} / \mathrm{s}$ ．Double Beam tube．Reliable general purpose scope，£22／10／－each， $\mathbf{3 0 / -}$ carr．
COSSOR 1035 OSCILLOSCOPE，£30 each， $30 /$ carr．
COSSOR 1049 Mk ． 111 ，£45 each， $30 /-$ carr．
RELAYS：GPO Type 600,10 relays（4） 300 ohms with 2 M and 10 relays（a） 50 ohms with 1 M ．， $\mathbf{\ell} 2$ cach， $6 /=$ post．
12 Small American Relays，mixed types £2，post 4／－．
Many types of American Relays available，i．e．，Sigma；Allied Controls；Leach； etc．Prices and further details on request 6 d ．

GEARED MOTORS： 24 v．D．C．，current 150 mA ，output 1 r．p．m．， $30 /$－each， 4／－post．Assembly unit with Letcherbar Tuning Mechanism and potentio－ meter， 3 r．p．m．，$£ 2$ each， $5 /-$ post．
SYNCHROS：and other special purpose motors available．British and American ex stock．List available 6d．

TCS MODULATION TRANSFORMERS， 20 watts，pr． 6,000 C．T．，sec． 6，000 ohms．Price $25 /$－，post $5 /$－．

SOLENOID UNIT： 230 v．A．C．input， 2 pole， 15 amp contacts， $\mathbf{\text { 玉 } 2 / 1 0 / - ~ e a c h ~}$ post 6／－．

CONTROL PANEL： 230 v．A．C．， 24 v．D．C．＠ 2 amps．，$£ 2 / 10 /-$ each，carr． $12 / 6$.
OHMITE VARIABLE RESISTOR： $5 \mathrm{ohms}, 5 \frac{\mathrm{l}}{\mathrm{mps}}$ ；or 2.6 ohms at 4 amps ． Price（either type）$£ 2$ each， $4 / 6$ post each．
TX DRIVER UNIT：Freq．100－156 Me／s，Valves $3 \times 3 \mathrm{C} 24$＇s；complete with filament transformer $230 \mathrm{v} . \mathrm{A} . \mathrm{C}$ ．Mounted in 19 in ．panel， $\mathcal{E} 4 / 10 /-$ each， $15 /$ carr．
POWER SUPPLY UNIT PN－12A： 230 V a．c．input $50-60 \mathrm{c} / \mathrm{s} .513 \mathrm{~V}$ and $1025 \mathrm{~V} @$ 420 mA ourpur．With 2 smoothing chokes $9 \mathrm{H}, 2$ Capacitors， 10 Mrd 1500 V and 10 Mfd 600 V ．Filament Transformer 230 V a．c．input． 4 Rectifying Valves type $5 \mathrm{Z3}$ ． on steel base $19{ }^{\circ} \times 11^{*} \mathrm{H} \times 14^{\circ} \mathrm{D}$ ．（All connections at the rear）．Excellent condition E6．10．0．each，Carr．£1．

AUTO TRANSFORMER： $230-115 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}$ ， 1000 watts．mounted in a strons $\begin{array}{ll}\text { steel case } 5 \\ 50-60 \mathrm{c} / \mathrm{s}, 500 \text { watts．} 7^{7} & \times 5^{\circ} \times 5^{*} \text { ．Mounted in steel ventilated case．} £ 3 \text { each，}\end{array}$ Carr．10／．

POWER UNIT： 110 v ．or 230 v ．input switched； 28 v ． 45 amps ．D．C．output． Wt．approx． 100 lbs, ， $117 / 10 /$－each， $30 /$－carr．SMOOTHING UNITS suitable for above $£ 7 / 10 /$－each， $15 /$－carr．

DE－ICER CONTROLLER MK．II：Contains 10 relays D．P．changeover heavy duty contacts， 1 relay 4P，C／O．（235 ohms coil）．Stud switch 30－way relay operated， one five－way ditto，D．C．timing motor with Chronometric governor $20-30$ V．， 12 r．p．m．；geared to two 30 －way stud switches and two Ledex solenoids， 1 delay
relay etc．，sealed in steel case（ $4 \times 5 \times 7$ ins．）$\& 3$ each，post $7 / 6$ ． relay etc．，sealed in steel case（ $4 \times 5 \times 7$ ins．）$\times 3$ each，post $7 / 6$ ．
MODULATOR UNIT： 50 watt，part of BC－640，complete with 2×811 valves，

NIFE BATTERIES： $4 \mathrm{v}=160 \mathrm{amps}$ ，new，in cases， $\mathbf{\&} 20$ each，$£ 110 /$－carr．
FUEL INDICATOR Type 113R： 24 v ．complete with 2 magnetic counters $0-9999$ ，with locking and reset controls mounted in a 3 in ．diameter case．Price 30／－each，postage 5
FREQUENCY METERS：BC－221，meter only $\mathbf{E 3 0}$ each，BC－221 complete with stabilised power supply $\mathbf{£ 3 5}$ each，carr． $15 /-$ ．LM13， $125-20,000 \mathrm{Kc} / \mathrm{s}$ ．， $\mathbf{£ 2 5}$ each，
carr． $15 /-$ ．TS．175／U，$£ 75$ each，carr．$£ 1$ ．
CANADIAN HEADSET ASSEMBLY：Moving coil headphones 100Ω ，with chamois leather earmuffs．Small hand microphone complete with switch and moving coil insert．New condition．Price $35 /$－each，post $5 /$ ．
AUDIO OS CILLATOR 382／F：Input 115 v ．A．C．， $50 \mathrm{c} / \mathrm{s}, 20-200,000 \mathrm{c} / \mathrm{s}$ per sec． in 4 ranges．Cont．wave．Output $0-10 \mathrm{v}$ ．in 7 ranges．Power output 100 mW ． Output impedance $1,000 \Omega$ ．£ $27 / 10 /$－each， El carr．
RACK CABINETS（totally enclosed）for std．19in．panels．Size： 6 ft ．high x 21 in ．wide $\times 16 \mathrm{in}$ ．deep．With rear door．$£ 12$ each，$£ 2 / 10 /$ carr．OR 4 ft ．high \times 23 in ．wide $\times 19 \mathrm{in}$ ．deep．With rear door．$£ 8 / 10 /-$ each，$£ 2$ carr．
CATHODE RAY TUBE UNIT：With 3in．tube，Type 3EG1（CV1526）colour green，medium persistence complete with nu－metal screen，£3／10／－each，post $7 / 6$ ． APNI ALTIMETER TRANS．／REC．，suitable for conversion $420 \mathrm{Mc} / \mathrm{s}$ ．，com－ plete with all valves 28 v ．D．C． 3 relays， 11 valves，price $£ 3$ each，carr． $10 /$－．

CANADIAN C52 TRANS／REC．：Freq． $1.75-16 \mathrm{Mc} / \mathrm{s}$ on 3 bands．R．T．， M．C．W．and C．W．Crystal calibrator etc．，power input 12V．D．C．，new cond．， complete set $£ 50$ ．Carr．$£ 2 / 10 /-$ ．Power Unit for Rec．，new $£ 3 / 5 /=$ ．Carr． $10 / \mathrm{o}$ ．
DECADE RESISTOR SWITCH： 0.1 ohm per step． 10 positions． 3 Gang，each 0.9 ohms．Tolerance $\pm 1 \% \mathbf{\& 3}$ each， $5 /-$ post． 90 ohms per step． 10 positions， total value 900 ohms． 3 Gang．Tolerance $\pm 1 \% \quad £ 3 / 10 /=$ each， $5 /-$ post．
TELESCOPIC ANTENNA：In 4 sections，adiustable to any height up to 20 ft ． Closed measures 6 ft ．Diameter 2 in ．tapering to 1 in ． $\mathbf{5} 5$ each $+10 /=$ carr．Or 89 for two + 反l cart．（brand new condition）．

COAXIAL TEST EQUIPMENT：COAXWITCH－Mnftrs．Bird Electronic Corp．Model 72RS；two－circuit reversing switch， 75 ohms，type＂N＂female connectors fitted to receive UG－21／U series plugs．New in ctns．，E6／10／－each， post 7／6．CO－AXIAL SWITCH－Mnftrs．Transco Products Inc，Type
M1460－22， 2 pole， 2 throw．（New） $\mathbf{8} 6 / 10 /-$ each， $4 / 6$ post． 1 pole， 4 throw， Type M1460－4．（New） $\mathbf{~ 6 / / 1 0 / - ~ e a c h , ~ 4 / 6 ~ p o s t . ~}$

PRD Electronic Inc．Equipment：FREQUENCY METER：Type 587－A， 0．250－1．0 KMC／SEC．（New）£75 each，post $12 / 6$ ．FIXED ATTENUATOR： ATOR：Type $1157 \mathrm{~S}-1$ ，（new） 66 each，post $5 / \mathrm{m}$ ．

FOR EXPORT ONLY BRITISH \＆AMERICAN COMMUNICATION EQUIPMENT

Type B． $44 \mathrm{Tx} / \mathrm{Rx}$ ，Crystal controlled， $60-95 \mathrm{Mc} / \mathrm{s}, 12 \mathrm{~V}$ ．d．c．operation．W．S．Type 88，Crystal controlled， $40-48 \mathrm{Mc} / \mathrm{s}$ ．W．S．Type $\mathrm{HF}-156, \mathrm{Mk}$ ．II，Crystal controlled， $2.5-7.5 \mathrm{Mc} / \mathrm{s}$ ．W．S．Type 62 ，tunable， $1.5-12 \mathrm{Mc} / \mathrm{s}$ ．C．44，Mk．II，Radio Telephone， Single Channel， $70-85 \mathrm{Mc} / \mathrm{s}, 50$ watts，output， 230 V ．a．c．input．G．E．C．Progress Line Tx Type DO36， $144-174 \mathrm{Mc} / \mathrm{s}$ ， 50 watt，narrow band width．A．C．input 115 V ． BC－640 Tx， $100-156 \mathrm{Mc} / \mathrm{s}, 50$ watt output， 110 V or 230 V input．STC Tx／Rx Type 9X，TR1985；RT1986；TR1987 and TR1998， $100-156 \mathrm{Mc} / \mathrm{s}$. TRC－1 Tx／Rx， Types T． 14 and R．19，FM $60-90 \mathrm{Mc} / \mathrm{s}$ ．With associated equipment available． Redifon GR410 Tx／Rx，SSB，1．5－20 Mc／s．Sun－Air Tx／Rx Type T－10－R． Collins Tx／Rx／Type 18S4A．Collins Tx／Rx Type ARC－27，200－400 Mc／s， 28 V d．c． BC－375；433G；348；718；458；455 Tx／Rx．Directional Finding Equipment CRD． 6 and FRD． 2 complete Sets available and spares．Telephone Installation type XY， （U．S．A．）， 600 Line Automatic Teiephone Exchange．Complete system with full set of Manuals．Mobile Communications Installation mounted in a trailer with $4 x$ pneumatic tyres．Consisting of 3xARC－27 Tx／Rx with all associated equipment（as new）．

ALL GOODS OFFERED WHILST STOCKS LAST IN＂AS IS＂CONDITION UNLESS OTHERWISE STATED

 P
 R

 PA

 LIMITED

 LIMITED}FULLY TESTED AND MARKED

AC107	3/-	10C170	3
AC126	2/6	OC171	4
AC127	3/6	OC200	3
AC128	2/6	OC201	7
AC176	5/-	2G301	2
ACY17	3/-	2 G303	2
AFI14	4/-	2N711	10
AF115	3/6	2N1302-3	4
AF116	3/6	2N1304.5	5
AF117	3/6	2N1306-7	6
AF239	12/6	2N1308-9	8
AF186	10/-	2N3819F.E.T.	9
AF139	10/-	Power	
BFY50	4/-	Transistors	
BSY25	7/6	OC20	10
8SY26	3/-	OC23	10
BSY27	3/-	OC25	8
BSY28	3/-	OC26	5
BSY29	3/-	0C28	7
BSY95A	3/-	0 C 35	5
OC4 1	2/6	OC36	7
OC44	2/6	AD149	10
OC45	2/6	2 SO 34	10
0 C 71	2/6	2N2287	20
OC72	2/6	2N3055	15
$0 C 73$	3/6	Diodes	
$0 \mathrm{OC81}$	2/16	AAY42	2
OC81D	2/6	OA95	2
$0 \mathrm{OC83}$	4/-	OA79	1
OC139	2/6	OA81	1
OC140	3/6		1

PACKS OF YOUR OWN CHOICE UP TO
THE VALUE OF 10/- WITH ORDERS
OVER EA_{4}

ANOTHER SCOOP FOR BI-PRE-PAK ast released from stock,
a.e.i. integrated circuits

These are brand new genuine surplus stocks. marked an guaranteed to full makers specification and not remarked NE806A Dual 4 I/P Exparielects. NE806A Dual 4 I/P Expander TTL $\begin{array}{ll}\text { NE808A } & \text { Single } 8 \text { I/P Nand Gate TTL } \\ \text { NE816A } & \text { Dual } 4 \text { I/P Nand Gate TTL }\end{array}$ $\begin{array}{ll}\text { NE816A } & \text { Dual } 4 \text { I/P Nand Gate TIL } \\ \text { NEB25A } & \text { D.C. Clocked J-K Fllp-Flop TIL }\end{array}$ NE840A Dual 4 I/P Exclusive OR Gate TTL NE855A Dual 4 Power Gate TTL NEB70A Triple 3 I/P Nand TTL NE880A Quad 2 Nand TLL SP616A Dual 4 Nand Gate DTL Sp631A Quad 2 l/P Gate Expander DTL SP670A Triple 3 Nand Gate DTL SP808A Dual I/P Expander TTL $\begin{array}{lll}\text { Sp808A } & \text { Single } 8 \text { I/P N Nand Gate TTL } \\ \text { SP816A } & \text { Dual } 41 / P \text { Nand Gate TLL }\end{array}$ $\begin{array}{ll}\text { SP816A } & \text { Dual } 4 \text { I/P Nand Gate TIL } \\ \text { SP825A } & \text { D.C. Clocked J-K Flip-Flop TI }\end{array}$ SP840A Dual 4 IP Exclusive OR Gate TTL SP855A Dual 4 Power Gate TLL SP870A Triple $31 / P$ Nand $T L$ SP880A Quad 2 I/P Nand TTL NE500K Video Amplifier
NE501K VIdeo Ampllfier 40 MHz NE806J Dual 4 I/P Expander TTL NE808J Single 8 I/P Nand Gate TTL NE816J Dual I/P Nand Gate TTL $\begin{array}{ll}\text { NE825J } & \text { D.C. Clocked J-K Filtp-Fiop TL } \\ \text { NE840J } & \text { Dual } 4 \text { VP Exclusive OR Gate TML }\end{array}$ NE840J Dual 4 VP Exclusive OR Gate TTL NE855J Dual 4 Power Driver TT $\begin{array}{ll}\text { NE870J } & \text { Triple } 3 \text { I/P Nand TTL } \\ \text { NE880J } & \text { Quad } 2 \text { VP Nand TT }\end{array}$ ST620A J-K Flip.Flop DTL ST620A $\begin{array}{ll}\text { ST659A } & \text { Dual } 4 \text { Buffer/Driver DTL }\end{array}$ ST680A Quad 2 Nand DTL Suffix: $A=$ DIP 14 lead

LOOK! TRANSISTORS ONLY 6d EACH

TYPE A
PNP SILICON ALLOY to- 5 CAN Spec:-

ICER AT VCE $=20 \mathrm{~V}$ 1 mA MAX. HFE. 15-100
These are of the 25300 type which
is a direct equivalent to the
OC200
o/205 range.

TYPE B
PNP SILICON PLASTIC ENCAPSULATION Spec:- ICER AT VCE $=10 \mathrm{~V}$ 1 mAMAX. HFE, 10-200 Thase are of
2N4059/62 range

TYPE E
PNP GERMANIUM
FULLY MARKED AND TESTED. STATE R.F. OR A.F WHEN ORDERING.

NEW TESTED \& GUARANTEED PAKS
H8 4 1000 PIV. 1 AMP. PLASTIC 10/-

8772	AD161—AD162 NPN/PNP TRANS. $10 /-$
COMP. OUTPUT PAIR	

B81 10 | REED SWITCHES MIXED |
| :--- |
| TYPES LARGE \& SMALL |

8892 | 5 SP5 LIGHT SENSITIVE CELLS |
| :--- |
| LIGHT RES. 400Ω DARK $1 \mathrm{M} \Omega$ |
| $10 /-$ |

8918 \begin{tabular}{lll}

8 \& | NKT163/164 PNP GERM. TO -5 |
| :--- |
| EQUIVALENT TO OC44, OC45 | \& $10 /-$

\end{tabular}

| | | |
| :--- | :--- | :--- | :--- |
| $B 924$ | NPN SIL TRANS. AO6 $=$ BSX20. | |
| $2 N 2369.500 M H z . ~$ | 260 mW | $10 /=$ |

| 893 | GET113 TRANS. EQUIV. TO |
| :--- | :--- | :--- |
| ACY17-21 PNP GERM. | $10 /-$ |

8965 HPE100-300 IC. 600 mA .200 MHz 10/=
XB112 \& XB102 EQUIV. TO AC126
B98 10 AC156, OC81/2. OC71/2, NKT271. 10/-

CAPACITORS, ELECTROLYTICS.
200 PAPER, SILVER MICA, ETC. 10/-

H4 $250 \begin{aligned} & \text { MIXED RESISTORS } \\ & \text { POST \& PACKING } 2 \%\end{aligned} 10 /-$
H7 40 WIREWOUND RESISTORS MIXED
10/-
Return of the unbeatable P. 1 Pak.
Now greater value than ever
Full of Short Lead Semiconductors \& Electronic Components, approx. 170. We guarantee at least 30 really high quality factory marked Transistors PNP \& NPN. and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.

Please ask for Pak P.1. Only $10 /-$ 2/- P \& P on this Pak.

Make a Rev. Counter for your Car. The 'TACHO BLOCK'. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a perfectly linear and accurate rev counter for any car.

FREE CATALOGUE AND LISTS for: -

ZENER DIODES

 TRANSISTORS, RECTIFIERS FULL PRE-PAK LISTS \& SUBSTITUTION CHARTMINIMUM ORDER 10/- CASH WITH ORDER PLEASE. Add 1/-post and packing per order. OVERSEAS ADD EXTRA FOR AIRMAIL.

P.O. RELAYS

VARIOUS CONTACTS AND
8 for COIL RESISTANCES
NO INDIVIDUAL SELECTION.
POST \& PACKING 5/-

FREE: A WRITTEN GUARANTEE WITH ALL OUR TESTED SEMICONDUCTORS

MINIATURE EAR PIECE

15/20 AMP CONNECTORS Polythene insulated 12-way etrip
$2 / 6$ each $84 /-$ doz.

13 AMP FUSED SWITCH
Made by G.E.C. For connecting wate trpe $3 / 6$ each $30 /-$ doz. Mctal bozes for surface mounting $1 / 6$ each $15 /=$ doz.

SUPPRESSOR

CONDENSER TCC

1 mid. 280 v . A.O. working metal cased
with firsing lug. $1 / 9$ each 18/- doz.

 SHEET PAXOLIN
Ideal for transiator projectas, panele 12in. $\times 6 \mathrm{~mm} ., 1 / 9$ each

G.E.C. MULTIPLE

SWITCHES
Setal boxen (with cable knockouts) sprayed Ner with cover and switch monating grld for 12 switches $8 /-, 6$ witchea $5 /-, 4$ swilches
$4 /-, 2$ switches $3 / 8$.
a. E.c. Clipper Swltches

For the above boxen. 5 amp A.C. rating, one-wag $1 / 8$.
2 .way $2 /-$ bell puht $2 /-$, intermediate $2 / 6$. secret $2 / 8$.
15 amp one-way $2 / 6$.

THERMOSTAT

Continuously rariable $30^{\circ}-90^{\circ} \mathrm{C}$, Has aenmor bulb connected by 33in. of flexible tubing. On operation
a 15 mmp 250 volt switch Is opened and in addit a plunger movea through approx. tin. This could be uned to open valye on
ventilator otc. $28 / 6$ plus $4 / 6, \mathrm{p}$. 8 ins.

HI FI BARGAIN
FUL FI 12-TNCH LOUDSPEAKERoudspeakers that wc have ever offared. produced by one of the country's most trame and ls atrongly recommended
for Hi-Fi load and Rhythm Guitar and public address. 44.000 Maxwells-Power Handiling is Wath R.M.A.-Cotie moulded fibre Freq. response $30-10,000$ o.p.s.-- Epecity 3 or 15 ohrns-Main re eonabice 60 c.p.s.-Chansik Diarn. Mounting holes 4 , boles-fing diam, on plech circle. 11 jin dam.-Overall helgbt 5 ilin. A 20 speaker ollered for only £3.19.8 plus $7 / 6 \mathrm{p}$. \& p. D. Don't mis.
$£ 7.19 .6 .18 \ln .100$ watt $£ 19.10 .0$.

REED SWITCHES

Glana oncased. switches operated by external magnet-gol Miniatur
 make and
Standard. 2 in. long $\times 3 / 16 \mathrm{hn}$. dinmeter. This will break ourrents of up to 1 A , voltages up to 250 volts. Price $2 /$ - each.
$18 /=$ per dozen.
 it can be fitted into a rmabler apace or a farger quantity ma be packed into a square molenold. Rating 1 amp 200 volt.
small ceramio magneta to operate thers reed wwithes
$1 / 8$ ench. $18 /$-dozed.
NEED A SPECIAL SWITCH ?
Double Leat Contact. Very alighe preanure closes both
contacts. $1 / 3$ eaoh. $12 / /$ doz. Plapto push-rod
suitablo for operating, $1 /-$ eacho $8 /-$ doz.
 multi cable Inlet and outlet deslgmed for easy connection Also, each way has 2 test mocikets and a disennnecting plug. circuilt, ofered at $60 / 6$ each, which is only a fraction of the egular price, posiage and inmurance $5 / 6$.
Under-Iloor Heating Cable. 200ft. lepsths, wultable for dis.
mipating 1,000 watt at 80 volta. Join three \ln series to makea
240 volt thains operated element of 3 kW . Price $20 /-\mathrm{per}$ ength, $4 / 6$ post on any quinnelity. 3-Core Leads. Heavy duty $23 / 36$, a verage length 5 ft . $10 /$ per
dozen length. plut $4 / 6 \mathrm{P}$. $\$ \mathrm{~J}$.
Papst Motors. Est. 1,40th h.p. Made fdr $110-120$ volt working,
but t wro of these worly diealy together of our ntandard 240 rolt malas. A really beautifnl motor, extremely quie running and reversible. $30 /-$ each. Inatrument Znobs. Iin. ding, head with zin. shank for flatted
in. apindie, 9 d. each. $8 /=$ dozen. Ditto but with metal disc, in. spindle, 9 d . each. $8 /=$ dozen. Ditto but will Midget Ontput Transformer. Ratio $140: 1$. Bize approx
 flying leads. $4 / 6$ each, $48 /-$ doz.
midget Ontput Transformer. Hatjo $80: 1$. 8ize approx
 $4-G \operatorname{sng}$ Air Spaced Tuning Condenser for AM/HM circulta. 4-Gang Air Spaced Tuning Coadenser for AM/FM cirenits. PM rfsection 9.5 pf osc section 11.2 pt-integralslow-motion drlve. $9 / 6$ each.
Mains Connector. A quick way to connect equipment to the
mains safely and armiy mains safely and armiy-L.. N. and L., coded to new colour tog on; has sockets which allow lneertion of meter withou difaconnection; cable injets firmiy hold one halr wire on up
to four 7.029 cables. $12 / 6$ each.

ERGOTROL UNITS
These unita made by the Multard Oroup are for
operiting and controling d.c. Motors and equil, neent trom A.C. manis.
Thytiotors are uned and these supply a variable d.c. resulting in motor apeed control and operating
ertielepcy fas auperior to most other methods. eiticlengy far superior to most other methods.
The unita are contalned in wall mounting The unitn are contalned in wall mounting
cablimets whith front control pannel on whach are cabimets whith front control panel on which are
fuses puah butcons for on/ora and the variable tuses - push buthons for
Lhyristor fring control.
4 models are ayailable-sll are brand new in

 $\begin{array}{ll}\text { Model } 2413 \text { for up to } & 45 \text { ampa } \\ \text { Modet } 2415 \text { Ior up to } 80 \text { amps } & \text { \&5. } 10.0 \\ \text { Note: } 2415 \text { ls a floor mounting unit. }\end{array}$ DISTRIBUTION PANELS
Juat whint you need for work bench or lab, 4×13 amp
mockets in metal bor to take standard is amp funed cable. Wired up ready to work, $38 / 6$ lens plug ; $45 /$ - with pitted 13 amp plug; $47 / 6$ with fitted 15 nmp plug, plus $4 / 6$ STANDARD WAFER SWITCHES

24 HOUR TIME SWITCH

Mains operated. Adjuntable Contacts give onforf per 24 hours. Contacts rated 15 amps, repeating mechanism so Ideal for khop window
control, or to switch hall lighta (anti-burglar precaution) while you are on hollday, Made by the famous Bmilths Company. Thia month
only $38 / 6$ complete with perspex cover, new and unused, plus $3 / 6$ ong $38 / 8$ cornplete with perspex cover, new and unused, plus 3 ,
postrge and tharance, a real snip which should not be missed.

THIS MONTH'S SNIP

A parcel of interrated circuits made by the famoos Plessey Company. A once-fanalifetime offer of Micro-electronle devices-well below cost of manulacture. The parce
contalne 5 ICs al] new and perfect, first-grade device, defintely not sub-standard or seconds. The ICa are all singie silleon chip General Purpose Amplifiera. Regular price of which is well over 11 each. Full circnlt detalls of the IC s are included and to addition you will recelve a lint of 50 diferent 1Ce available at bargain prices $5 /$ upwarda with circuits ath technical Credited when you urder IIC. value \&1 and upwards.

RE-CHARGEABLE TORCH

Neat flat torch, fits unobtrusively in your pocket, containa
2 Nicad cells and built-in charger. Pluge into ghaver adaptor and charges from our standard $200 / 240$ volt majn. Americar
made, sold originally at orer 4
dollars. Our price ouly $19 / 8$ each.

VARYLITE

WIII dim incandescent ughting up to 600 whtt from full brilliance to out may be fitted in place of thla, or mount on surface. Price complife in heavy may he fitted in place of thas, or mount
plastio box with control thob $£ 3.19 .8$.

PROTECT VALUABLE DEVICES from thermal runaway or overheating: Thyristors. reetitiers, trawsistors, otc., which use heatoinks can easily be protected. Bimply make the contact generally, can also be adequately protected by having thermostats in strategic apots on the casing. Our contact thermostat has a callbrated dial for setting between 90 deg. 20180 deg. F. or with the dial removed range eetting in between 80 to 800 deg. F. Price $10 /$

I HOUR MINUTE TIMER

VARIAC CONTROLLERS
With these you ean vary the voltage applled to your circuit Irom applleation therefore In to dim lighting. We offer a zange of these, ex-equipment but iittle unet and in every way as good as new. Any not so will be oxchanged or cash refunded. 2 gmp £4.19.6
$6 \mathrm{amp} £ 8.19 .6$. 8 anp $£ 12.19 .6$. $10 \mathrm{amp} £ 15.18 .6$.

HOUR COUNTERS

If you with to know how long your equipruent han been switobed on then thls is what you need. Countr running time up to 999 hours. $80 \mathrm{c} / \mathrm{s}$ mains ope
ituurance. Resettable type $68 / 6$ plus $3 / 6$ post and insurnance.

THE PECTRON HEATING/VENTILATING CONTROL This neat unit contalso all the cont (a) A clocks spitch giving 2 on/ori perionds per 24 hours. (b) A thermal delay switch to prevent cold alr belng blow (c) Auto warma up.
to vary vollage and thus control fan
 (d) A 24 -volt tranaformer to provide then
mary to operrte molenold of gan valve.
(f) A changeover switch to bypara the
the low vollage neces-
\qquad
(f) Changeover switch to ent off heat so aliowing cold air to be blown for sumuer ventilation.

MICRO SWITCH
6 anp. changeover coztacta. 1/9 each

MINIATURE WAFER SWITCHES

2 pole, 2 way- 4 pole, 2 way- 3 pole, 3 way4 pole, 3 way- 2 pole, 4 way- 3 pole, 4 way2 pole, 6 way-1 pole, 12 way. All at $3 / 6$ each. 38/- dozen، your masortment.

WATERPROOF HEATINO
ELEMENTT
20 yarde lenth 70W. Selfegulating
temperature control 10/- post free.

DRILL CONTROLLER Electronlcally changes speed
from approximately 10 reva to maximum. Pull power at all apeeds by flngerottp control
Kit licluden all parts, case everythhag and fuls instruo thons $19 / 6$, plus $2 / 6$ post and
insurance. Made up model also
availabio $37 / 6$ plus $2 / 6$ p. \& p.

MAINS MOTOR

Precision made-as used in record
decks and tapo recorders-ideal aloc decks and tape recorders-ideal aloc for extractor fans, blower, heater, otc.
Now and perfect. Snip nt $\mathbf{~} / 6$. Postage 3/- for frot one then $1 /$ for anch one
oflered. 12 and over post free. LOCK WITH ELECTRIC CLOCK
25 AMP SWITCH Made by Bmith"s, thege unith are as
fitted to many top quality coolers to control the oven. The clock to mains
driven and frequency eontrolled so it is extremely accurate. The two smail
dials enable switch on and ofr times to

 fraction of the regular price-Dew and unued only $38 / 8$,

THERMAL CUTOUT

A miniature device tha, dia. on one screw axing mount-
can be used for motor overloud protection-fire alarmcan be used for motor overloud protection-fire alarmwht flams radiant or conducted heit. 1/6 each, $15 /-$ Woz. e5 100.
00005 mFd TUNING

CONDENSER

Proved design, ideal for atra
circuits $2 / 6$ each. 24/. doz.

SUB-MINIATURE MOVING COIL MICROPHONE
 price protmbly $k, 3$ or nuore. Our price $10 / 6$. Note theee are
ex-equipmeat but if not in perfect working order they will ex-equipmeat

MAINS TRANSISTOR POWER PACK

Designed to operate tranistor sete sad amplliors. Adjuist
able output bv., DV., 12 volts for up to B00mA (class B Porking), Take the placeo of suy of the following batteries PP1, PP3, PP4, PPG, PP7, PP9, and others, Kit comprigee
ramine tranuformer rectifier, smoothing and load resistor. condensers and listructions. Real valp at only 16/6. plus $3 / 6$ postake

PP3 BATTERY ELIMINATOR

Run your small transtitor radio from
the tuatho-iull wave circult. Mad
ready to wire lato your set and
saldustable high or low current.

$8 / 6$ each

85 Watt Tubular Element. Very woll made unit. The clernent II wound om a porcehin former then encmsed tis brass tube terminated with beaded leads 12 in , long. Normal
malna voltaige. Price $5 /-$ each or $54 /-$ per don. 250 V AO working ooadensers for power factor correction,
mmtor narting etc. 3.5 mid. $6 / 6$ ea., 6.5 mid. $8 / 6$ ea., 8 mfd. $9 / 6$ ea.
3 a.mp hattery charger wit comprises copper backed circult kmoothing condenser $29 / 6$ ino. wirtug diagrane pont $\$$ ind balanced armature unit , neful in operates apeaker or microphone, e2.10.0 doz.
Acos eryital microphone. Adjuetable stand converta thin
from hand mic. to deak mic. $18 / 6$ ea.

> RADIO STETHOSCOPE

Easiest Way to tault tind-traces signal
stopa you've found the fault. Uge It oa
Rutio, TV, ampluter. anytitng-com-
Railio. TV. amplitier, anything-com-
plete kit comprifes two npectal transiso
tors and all parta pers and all parta
tincluding probe tube and crytal earplece
$28 / 6-i$ in atelose matend of earpiece $7 / 6$
toxtra-post and insurn

ELECTRONICS (CROYDON) LTD
Dept. WW, 266 London Road, Croydon CRO-2TH Also 102/3 Tamworth Road, Croydon

VAIVES

P. C. RADIO LTD. 170 GOLDHAWK RD., W. 12

 01.7434946
PLEASE NOTE

MARCONI TEST EQUIPMENT

 SIGNAL GENERATOR TF 801/A $10-300 \mathrm{Mc} / \mathrm{s}$. in 4 bands. Internal at 400 c/s kc / s. External $50 \mathrm{e} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$.Outpue 0.100 db below 200 mV from 75 ohms source. E85. DITTO but 801/A/I with additional high level output. $\mathrm{E89}$. Both P. \& P. 20/-, including necessary connectors, plugs, TF 899 VALVE VOLTMETER, 10 mV VIDEO OSCI Carriage 30/. VIDEO OSCILLATOR TF 885A \&
885 A/I. 455 and $£ 85$ resp. Carr, $30 /$ FM DEVIATION METER TYPE TF 791 B . Frequency range: $4-250 \mathrm{MHz}$, deviation $1-75 \mathrm{kHz}$. GENERATOR. To clear. In vory good "as seen" condition. etc. ilS.
IGNITION TESTER TYPE TF 1348 For all vehical electrical fault-finding and
tuning $f 60$.

DISTORTION FACTOR METER TYPE TF 142E. Frequency range range: 0.05 to 50% ranges. Distortion range: 0.05 to 50% Input impedance
600 , attenuation $0-60 \mathrm{db}$ continuously variable. Sensitivity 1 mW . E42.10.0 Variable. 20%.

AVO VALVE CHARACTERISTIC 29/4IFT. AERIALS each consisting of METER ten 3fs., fin. dia. cubular screw-i sections. Ilft. (6-section) whip aeria with adaptor to fit the 7 in . rod, insu pated base, stay pammer ete absolutely pegs, reamer, hammer, ece. Absolutely

In canvas bag, $\mathbf{3} / 9 / 6$. P. \& P. $10 / 6$.

arr

SOLARTRON EQUIPMENT

LAB. AMP AWS 151A, Frequency 15 Hz to 350 kHz . Metered output scope viewing, etc. 229.10.0. Carri
age 20/-. Regulated and stabilised P.S.U. SRS $151 \mathrm{~A}, 20$ to 500 V positive at 300 mA in ranges. Variable and ixed 170 l CD 7115.2 . Double beam, DC to 7 MHz 'scope, 685 . Carriage $30 /$. CD 643.2. Single beam Laboratory Model, DC to 14 MHz prise upon application. FIELD TELEPHONE TYPE "F", Housed in portable wooden cases. doors for up to 10 miles. Pair including batteries, fully tested. E6.10.0, or with 220 yds field cable in drum $\mathbf{6 7} 10.0$.
4,5 and 8 bank 25 way uniselectors, E4.10.0; $\mathbf{£ 6 . 1 7 . 6}$ respectively.
DAWE STORAGE OSCILLO. SCOPE complete wth trace shifer, price on request.
FURZEHILL VALVE VOLTMETER TYPE $3788 / 2.10 \mathrm{mV}$ to 100 V . To clear

HARNESS "A" R "B" control units, function boxes, headphones, miero phones, etc.
BOONTON A METER TYPE 160 A Freq. range 50 kHz to 75 MHz , main capaci cor range. 0.250 with $2.5 \times$ multidier. C85 plus carriage. R TS 497/B/URR, 2-400MHz. . TS 418 B/U SIGNAL GENERATOR, $400-1000 \mathrm{MHz}$. (105. Carr. 30/-

To view TEST EQUIPMEN
 be made to 01.7488006 Exten

TRANSISTORS, ZENER DIODES

MANY OTHERSIN STOCK inciude Calhode Ray Tube: and
c1 $21-$ in \mathcal{E} over 3 post ire
Open $9-12.30,1.30-5.30$ p.m. except Thursday $9-1$ p.m.

IMPEDANCE BRIDGE TYPE TF 369 (No. 5). Measures L \& C at 80 Hz , $1 \mathrm{kHz}, 10 \mathrm{kHz}$. Ranges:-L: $1 \mu \mathrm{H}-100 \mathrm{H}$. C: $1 \mathrm{mF}-100 \mu \mathrm{~F}$. R: $0.10 \mathrm{hms}-100 \mathrm{mohms}$. AC Bridge volts monitored and variable. Automatic detector sensitlvity control. El05. Carriage 30/-

WEE MEGGERS. 250v \&12.0.0. 500V ADVANCETYPE LI U.H.F. SIGNAL GENERATOR. $\mathbf{C O O}$. sinewave. External: sinewave and pulse width 15 to $600 \mu \mathrm{sec}$ V.H.F. SIGNAL GENERATOR TYPE 62 (S.T.C.). Complete with power supply. calibrated range (spiral type scale). Sine/ square, internal or external modulation.
Output $9.5 \mu \mathrm{~V}$ to 100 mV , also in DBM.
 frequency switching. 655 plus carriage. GENERAL RADIO AMPLITUDE 931A. 445 plus carriage.
A.F. SWEEP FREQUENCY OSCILrate 0.7 octaves $/ \mathrm{min}$. Variable sweep rate 0.7 octaves $/$ min. Variable output, ESS plus carriage
PANEL METERS. See our last month's
TELEMETRY STATION
We are able to offer, one only,
Telmery Station of very recent
American manufacture. Compris-
ing Helical Antenna, oscilloscope
receiver and associated Units,
Ampeex tape recorder and power
supply for the entire installation.
Interested clients with a knowledge
of this type of equipment are in-
fized to phone or write for further
particulars.
"S" BAND SIGNAL GENERATOR cma (2727-3797 mcs.). Power oueput Modulation: A unmodulated \mathbf{C} C.W. W , B Modulation: A unmodulated square wave modulated by internal free square wave modot mith PRF variable
running modulator whe 400 c so 4 kc . C Square wave
from modulated by internal modulator triggered by external source either sine or
square. $20-100 \mathrm{v}$ sine or $20-100 \mathrm{v}$. p . to p . square, $20-100 \mathrm{~V}$.
C85. P. \& P. 30%

FOR EXPORT ONLY

MULLARD N.W.S./T TRANS. in one floor-standing unit approx. 4 ft . $\times 21 \mathrm{ft}$. $\times 2 \mathrm{ft}$. The transmitter is
crystal controlled with eight switched channels, the recelver is continuously suned over the range 1.5 to 13 MHz . The transmitter delivers up to 2 ta
into che aerial. Complese with builk-in into the aerial. Complese wirh built-in
handset. COLLINS TYPE 23ID 4KW tune and manual tuning. Complete with very comprehensive spares. Full
specification and price on application. Complece installations and all Hpares. No. 19 WIRELESS SETS. H.P. SETS and all spares R. 210
RECEIVERS with all necessary RECEIVERS
PYE PTC 2002 N A.M. Ranger new and complete, 45 .

INTEGRATED CIACUITS MANY OTHERS IN STOCK

A 3005 wide band R.F. Ampl. 27/-
$\begin{array}{lll}\text { diss } \\ \text { CA } 3020 \text { Audo power ampl........... } & \text { 22/- } \\ \text { CA } 30 / * \\ \text { STC }\end{array}$
$\begin{array}{lll}\text { MIC } 93018 \text { Digital dual } 4 \text { imput gates } & 86 /- \\ \text { MIC } 709-1 \mathrm{C} \text { Linear operational ampl. } & 190 /-\end{array}$ MIC 9005 D Highspeed flip-flop.... 54
 tone controls, 86.2 .6.
controls, 12.19 .6 .

						LOWEST I.C. PRICES YET! $\begin{array}{lll}\text { ICIO } & 59 / 6 & \text { Sinclair IC amp. } \\ \text { PA230 } & 20 /- & \text { IC Preamplifier } \\ \text { PA234 } & 20 /- & \text { I watt audio amp. } \\ \text { PA237 } & 32 / 6 & 2 \text { watt audio amp. } \\ \text { PA246 } & 52 / 6 & 5 \text { watt audio amp. } \\ \text { PA424 } & 43 /- & \text { Zero voltage switch } \\ \text { SL403A } & 49 / 6 & 3 \text { watt Plessey amp. } \\ \text { TAA263 } & 15 /- & \text { Mullard IInear amp. } \\ \text { TAD100 } & 45 /- & \text { IC receiver } \\ \text { TAA293 } & 20 /- & \text { Mullard gen. purp. amp. } \\ \text { TAA310 } & 30 /- & \text { Record/Playback preamp. } \\ \text { TAA320 } & 13 /- & \text { MOS LF amplifier } \\ \text { UL702C } & 29 / 6 & \text { Plessey linear amplifier } \\ \text { 3N84 } & 26 /- & \text { Silicon controlled switch }\end{array}$ Data sheets available on request I/- per copy. PLEASE NOTE: Only new-full specification types.FAIRCHILD MICRO-LOGIC $\begin{array}{rrr}\text { ul } 900 & 9 / 9 & 9 /- \\ \text { ul } 914 & 9 / 9 & 9 /- \\ \text { ul } 923 & 12 / 6 & 11 / 9\end{array}$ Prices 5 page data and circuits art\qquad spreaders- $1 / 6$ each.	
						BY 127	
						OCP 71 19/6 Mulard hhoitanasisor $25+17 / 3$ $100+14 / 9$$\|$	

SUPER-BARGAIN STOCKTAKING SALE!!

Use form below for your order. CONDENSERS MUST BE ORDERED BY STOCK NUMBER ONLY. If any sale item is 'sold-out' when order received we shall substitute items of equal value. electrolytic capacitors

Capacity	Voltage	No. required	Stock No.	Price s. d.	£ s. d.	Capacity	Voltage	No. required	Stock No.	$\begin{aligned} & \text { Price } \\ & \text { s. d. } \end{aligned}$	£ s. d.
$\frac{1}{20} \mathrm{uf}$	6 6		$\frac{1}{7}$	4		$32 / 300 / 70$ $40 / 40$	275 275		G4/6A	66	
8 uf	6		11	4		$40 / 40$	300		G4/8	30	
32 uf	150		9	9		8/8	350		G4/9	$3{ }^{3} 0$	
100/200/200/50	275		18	76		350	25		G4/10	$2{ }_{2} 6$	
50/80	300		19	30		$60 / 100$	350		G5/4	2 5	
24	275		21	10		400	275		G5/5	$3{ }^{3}$	
16/32	350		25	26		$60 / 100$	275		G5/6	46	
32	275		26	16		100/400/32	275		G5/6A	76	
3,000	35		32	76		$100 / 400$	275		G5/7	76	
3,000	15		33	30		100/64	500		G5/7A	76	
2,500	9		36	20		4/4	250		G5/8	16	
750	12		38	19		100/65	250		G5/8A	40	
100	275		39	26		8/8	450		G5/9	40	
30	10		40	3		100/100/50	350		G5/10	76	
16	50 REV		42	20		100/380/16	275		G5/10A	76	
16/16	275		43	20		100/100	25		G5/11.	26	
16	275		44	10		100/20/10	350		G511		
350	12		45	- 9		20 ,	50		G5/12	56	
20/4	275		46	10		1,000/1,500	25		G5/12A	60	
64	275		, 51	19		$40 / 100$	350		G5/13	36	
32/32	350		52	26		40/40/40	350		G5/13A	36	
8/8/8	275		53	19		8/8/8	275		G5/14	26	
500	6		54	6		12,500	15		G6/1	150	
500	${ }^{4}$		60			800	6		G6/2	16	
64/32/8	275		62	26		1,600	80		G5/5	76	
30	35		67			1,000	60		G5/6	76	
50/50/50	350		69			100	275		G5/7	26	
40/40/20	275		70	20		200	250		G5/8	30	
400	6.4		71	3		200	150		G5/9	26	
320 $32 / 32$	10		72	3			200		G5/10	16	
$32 / 32$ +25	275 25					200	25		G5/10A	20	
250	150		G4/3	$\begin{array}{ll}2 & 6 \\ 2\end{array}$		40	350		G5/11	26	
50/50	200		G4/4			250	25		G5/12	26	
16	300		G4/5	16		1,000	12		G5/12 A	20	
60	350		G4/5A	26		40	450		G5/13		
60/200	275		G4/6	56					-		

Total:

RESISTORS. Mainly' 5 per cent. $7 / 6$ per 100 of any one value. 2/- per dozen Smaller any one value
Smaller quantities 3d. each. Most values in stock.
Mixed bags (our selection) 6/6 per 100 .
Mixed bags (our selection) $\frac{1}{2}$ to 3 watt $7 / 6$ per 100 .
MAINS DROPPER TYPE. Hundreds of values from .7 ohm upwards. 1 watt
to 50 watts. A large percentage of these are multi-tapped droppers for radio/television. Owing to the huge variety these can only be offered SILVER MICA/CERAMIC/POLYSTYRENE CONDENSERS 10/- per 100 of any one value. $3 /-$ per dozen of any one value. Smaller quanti-

COMPARE THESE PRICES!!

MULLARD POLYESTER CONDENSERS

1,000 pf	3d. each	400 V
1,500 pf	3d. each	
1,800 pf	3d. each	
2,200 pf	3d. each	
. 15 uf	6d. each	160 V
. 22 uf	6d. each	160 V
. 27 uf	6d. each	160 V
1 uf	1/- each	125 V

Price

TRANSISTOR BARGAIN! THEY CANT GET ANY CHEAPER!!! OC 44. First-grade Mullard. 4/- each.
OC 45. Mullard. Boxed. 4/- each.
P.N.P. Audio. Untested, unmarked. MAINLY O.K. 10/- per 100 .
N.P.N. Silicon. R.F. types, unmarked. ALI USUABLE, 10/- per 50

Power Out oct
ZTX 300. Transistors similar to, tested in P.E. organ circuit and approved
OCP 71 (similar to). Light-sensitive. 2/- each.
Light-sensitive Diodes. Can be used to control any transistorised device. 1 - each. $75 /=$ per 100 . £25 per 1,000 .
RECTIFIERS. Latest type. All marked. 800 volt peak, 1 amp mean current type 1N4006. $2 / 6$ each, 24/- dozen, $87 / 10 /-100$. S.T.C. $3 / 4$ (400 volt)
$2 / 6$ each, $24 /-$ dozen, $£ 7 / 10 /-100$. BYZ 13 or 19 (6 amp) $2 / 6$ each, $24 /-$ dozen, $87 / 10 /-100$.
BY $1272 / 6 \mathrm{~d}$. each. 24/- dozen. $87 / 10 /$ - per 100 . $£ 50$ per 1,000
RECORDING TAPE GIVE-AWAY! ALL BRITISH MADE, BEST ${ }_{5}$ QUALITY!
 3^{3} "Oddends" 2/3d.
GLANT SELENIUM SOLAR CELLS. Last few to clear at half price Circular, 67 mm . diameter $5 /$ - each. 50 mm . $\times 37 \mathrm{~mm}$. 3 for $10 / \mathrm{m}$
RECORD PLAYER AMPLIFIERS. All transistor. Complete with screened input lead, volume control and speaker leads. This excelient unit also has built-in rectifier and smoothing components enabling same to be used direct on 6 to 9 volt A.C. supply. Small number only! Cannot be repeated at this price! $\mathbf{3 0} / \mathbf{-}$ ea. IrANSISTOR RADIOS. Fantastic bargain! Tremendous value! Superb
quality sound from large speaker! Excellent sensitivity! Complete with earpiece, quality sound from large speaker! Excellent sensitivity! Complete with earpiece, battery and plastic carrying case, all packed in a colourfir oresentation box. You would expect to pay e5-but our price due to huge purchase is only $37 / 6 \mathrm{~d}$. CRYSTAL TAPE-RECORDER MIKES, $12 /-$ each. CRYSTAL EARPIECES WITH PLUG, $5 /$ - each. Marnetic earpleces. No plug. 16d. each. THIN CONNECTING WIRE. 10 yds $1 /-, 100$ yds $7 / 6 \mathrm{~d} ., 1,000$ yds. $50 /-$
RECORD PLAYER CARTRIDGES
ACOS GP67/2 15/- (Mono) GP94/1 30/- (Stereo, ceramic)
ACOS GP91/3 20/- (Compatible) ACOS GP93/1 with diamond needle 32/6d. ACOS GP93/1 25/- Stereo) ACOS GP94/1 with diamond needle 37/6d. TRANSISTORISED FLUORESCENT LIGHTS. 12 VOLT
8 watt $12^{\prime \prime}$ tube, Refector type $59 / 6 \quad 15$ watt 18 . tube, Batten type \quad 79/6

TRANSISTORISED SIGNAI. INJECTOR KIT VERO-BOARD

$\times 1^{10} \times .15$	\cdots		1/3	17*	$\times 33^{\prime \prime}$	x	. 1			14/8
$37^{\prime \prime} \times 22^{\prime \prime} \times .15$.	3/3		$\times 2{ }^{\circ}$	\times				4/2
$33^{\prime \prime} \times 31^{\prime \prime} \times .15$.	3/11	$33^{\prime \prime}$	$\times 3{ }^{\circ}$	\times				4/9
$5^{\prime \prime} \times 21^{\prime \prime} \times .15$		\cdots	$3 / 11$	5	$\times 2$	\times	. 1			4/7
$5^{\prime \prime} \times 39^{\prime \prime} \times .15$.	5/6	5 "	$\times 3{ }^{\prime \prime}$	\times.				5/6

Spot Face Cutter 7/6d. Pin Insert Tool 9/6d. Terminal Pins 3/6d. for 36 , Spot Face Cutter and $52 \frac{1}{2}^{\prime \prime} \times 1^{\prime \prime}$ boards $9 / 9 \mathrm{~d}$.
VOLUME CONTROLS. M ohm, $1 M$ ohm with D.P. switch. $5 k$ (no witch all 2/- each.
Double pots (most with concentric spindles)
$500 \mathrm{k} \log +50 \mathrm{k}$ lin + switch
$500 \mathrm{k} \log +50 \mathrm{k} \operatorname{lin}+$ switch $\quad 3 /-\quad 10 \mathrm{k} \log +10 \mathrm{k} \log +$ switch $\quad 4 / 6$ $\begin{array}{lll}50 \mathrm{k} S / \log +1 \mathrm{Mlog}+\text { switch } & 3 /- & 1 \mathrm{Mlin}+1 \mathrm{Mlin} \text { no switch } \\ 100 \mathrm{k} \text { in }+100 \mathrm{k} \log +\text { switch } & \text { 2/6 }\end{array}$ $\begin{array}{lll}100 \mathrm{k} \ln +100 \mathrm{k} \log +5 \text { witch } & 3 /- & 500 \mathrm{k} \operatorname{lin}+1 \mathrm{M} \text { lin no switch } \\ 100 \mathrm{k} \log +100 \mathrm{k} \log +\text { switch } & 3 /- & 1 \mathrm{M} \operatorname{lin}+2.5 \mathrm{M} \text { lin no switch }\end{array}$ $250 \mathrm{k} \log +100 \mathrm{k} \operatorname{lin}+$ switch $\quad 3 /-\quad 500 \mathrm{k} \operatorname{lin}+500 \mathrm{k} \log$ no switch $250 \mathrm{k} \log +500 \mathrm{k} \log +$ switch $\quad 3 /-\quad 100 \mathrm{k} \log +100 \mathrm{k} \log$ no switch $2 / 6$ $1 \mathrm{M} \log +1500$ ohm lin + switch $\quad 3 /-\quad 2 \mathrm{M} \log +2 \mathrm{M} \log$ no switch $\quad 3 / 6$ $1 \mathrm{Mlog}+100 \mathrm{k}$ lin + switch \qquad $2 \mathrm{M} \log +2 \mathrm{M} \log$ no switch $\quad 3 / 6$ Skeleton presets/Wire wound presets. Mixed. Very good value. $7 / 6$ per dozen. SCREENED LEADS. Specially designed to fill the demand for the most popular types-all leads consist of 9 ft . screened lead-except SL 11 which has 10 ft . co-axial cable.

	Phono Plug to Phono Plug				
SL 2	Standard Jack Plug to Standard Jack Plug				12
SL 3	Standard Jack Plug to Phono Plug				9
SL 4	3 pin Din Plug to Phono Plug . .				7
SL 5	Phono Plug to Wander Plugs)
SL 6	Standard Jack Plug to Wander Plugs				9
SL 7	3 pin Din Plug to Wander Plugs				$6 / 9$
SL 8	Phono Plug to Phono Coupler . .				
SL 9	3.5 mm . Jack Plug to Phono Plug		.		7/6
SL 10	Co-ax Plug to Co-ax Plug . ${ }^{\text {C }}$				6/
SL. 11	Car Aerial Plug to Car Aerial Socket		.		7/6
SL 12	3. pin Din Plug to 3 pin Din Plug		.	..	
SL 13	Co-ax Plug to 3.5 mm . Jack Plug		-	.	$7 / 6$
SL 14	3 pin Din Plug to 3.5 mm . Jack Plug		.	\cdots	8/3
SL 15	Standard Jack Plug to 3 pin Din Plug		.	\ldots	10/6
SL 16	3.5 mm . Jack Plug to Wander Plugs		\because	.	6/9
SL 17	3.5 mm , Jack Plug to Standard Jack Plug		.	\therefore	10/6
SL 18	3.5 mm . Jack Plug to 3.5 mm . Jack Plug				8/
SL 19	3 pin Din Plug to 5 pin "A" Din Plug 180°				
SL 20	3 pin Din Plug to Soldered Ends			\cdots	
SL 21	5 pin Din "B" Plug 360° to 2 Phono Plug				

PLUGS AND SOCKETS

tandard Jack Plug 3/6 Standard Chassis Mounting Socket
$\begin{array}{lll}3.5 \mathrm{~mm} \text {. Jack Plug } & 2 /- & 3.5 \mathrm{~mm} \text {. In-Line Socket } \\ 3.5 \mathrm{~mm} \text {. Screened do. } 2 / 3 & 3.5 \mathrm{~mm} \text { In-Line Scin }\end{array}$ 3 pin Din Plug $\quad{ }_{2} / 6 \quad 3.5 \mathrm{~mm}$. In-Line Screened Socke 3 pin Din Plug \quad. $2 / 6 \quad 3$ pin Chassis Mounting Socket

These prices cannot be repeated. Order now. Don't forget to add your name and address! Please include suitable amount to cover post and packing. Minimum 2^{\prime}..

SILICON RECTIFIERS $200 \quad 000$

MAINS TRANSFORMERS

PLESSE

FAIRCHILD $1.6 \quad 7-11$ 12+ MOTOROLA
FAIRCHILD 1.6 L914 Buat

14/. $12 / 611 / 9$ MC792P Fiop

| Flop | $14 /-$ | $12 / 6$ | $11 / 9$ | MC792P | $32 / 6$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| L709 Op Amp | $22 / 6$ | $20 /-$ | $18 / \%$ | MC799P Dual Bufier | $20 / 5$ |

MULLARD I.C's Datasheets

RESISTORS
Carbon Film

amistors (MUlLARD)						
${ }^{\text {R } 53}$ (STC) ${ }^{\text {c/is }}$	VA1010	${ }^{2 / 9}$	VA1039	2/6	VA1077 VAlO91	$4 / 6$
	VAAO33	${ }_{2 / 6}^{2 / 6}$		${ }_{3}^{2 / 6}$	VAl096	
ns) 12	VAl034	${ }_{2}^{2 / 6}$	VA066	39	VAlog7	

Send 2/6 for our latest comprehensive catalogue containing transistor selection charts and all prices, and free vouchers value 6/-

Telex 21-492
Tel: Ol-452 0161/2/3

Chwer for Components

LINEAR INTEGRATED CIRCUITS High Pertormance operati
Texas Type SN72709N
Texas Type SN72709N
This device is electrically similar to Mic709. MC709C. UA709C. N5709A. etc Also in stock:
PA234
PA237
CA 3000
CA3000
CA3001
CA3301
$23 /$.
$34 /-$

CAdd $1 /-$ to the above i.c.s. for data sheets H required $11 / 9$ with SL403A, free with (C-10) Other data sheets (apart from $\mid \mathrm{C}-10$) may be purchased separately at $1 / 6$ per sheet. post Othe
tree

1 WATT AMPLIFIER MODULE TYPE PCM1
This amplifier unit is a printed circuit module incorporating the popular and well tried external components. you simply connect an 18 volt power supply and a 15 or 16 ohm speaker or head phone. even the supply smoothing capacitor and the output capacitor are included The overall dimensions, including capacitors, are $2 \ddagger^{\prime \prime} \times 3^{\prime \prime} \times 8^{\prime \prime}$. The input fo 1 watt output at 1 kHz is typicallv 300 mV into 100 kohms This unit is evailable at only $36 /$ net. complete with descriptive leaflet or $70 /$ net per pair SILICON TRANSIS

BC107	$3 / 3$	BD123	24/3	TIP32A	23/-	2N3055	15/9
8 Cl 108	3/-	Bov20	24/3	TIS44	1/9	2N3702	3/6
8C109	3/3	BF184	7/6	TIS49	2/6	2N3703	$3 / 3$
BC158	7/6	8F194	7/1/	TIS50	3/9	2N3704	3/9
BC182L	3/2	85×29	10/4	2N696	4/9	2N3705	3/4
8C183L	2/5	BFX84	6/8	2N697	5/-	2N3707	4.
BC184L	$3 / 2$	BFX85	8/8	2N706	3/3	2N3708	2/5
8C212L	3/9	BFY50	5/-	2N1132	10/9	2N3819	9/-
BC213L	3/9	BFY5 1	4/6	2N2906	13/	2N3820	18/9
BC214L	$4 /$.	BFY52	5/.	2N2924	4/4	2N3826	5/11
BCY70	5/4	BSY95a	3/11	2N2925	5/3	2N4058	4/6
$8 \mathrm{CY71}$	10/4	MJ481	27/3	2N2926	3/.	2N4059	3/5
BCY72	4/6	MJ491	32/11	2N3053	6/8	2N5457	9/9
BD121	17/3	TIP31A	17.				

COMPONENTS CATALOGUE-2/- post tree (inland) Cash with order please, discounts may be deducted as follows: order over $£ 10-15 \%$. Trade orders- net 30 days.

Poen 9 ase send SAF with enquiries. CALLERS WELCOME

Tune-in to successful trading

Here are all the facts and figures you need - in one compact volume. Saves time and money every working day. Completely revised and updated. $8 \frac{1}{2}{ }^{\prime \prime} \times 5 \frac{1}{4}{ }^{\prime \prime} 516$ pp. Order your copy now.

Electrical and Electronic
 TRADER YEARBOOK 1970

40s. By post: 42s. 6d. from Electrical \& Electronic Trader Dorset House, Stamford Street, London S. E. 1.

NO EXCUSES! NO DELAYS! FROM STOCK! vaRIIABLE VOLTAGE TRANSFORWIERS
 50 AMPS
 AMP

 INPUT 230 v. A.C. 50/60
 OUTPUT VARIABLE 0/260 v. A.C. BRAND NEW. Keenest prices in the country. All Types (and spares) 0-260 $0-260 \mathrm{v}$. at I amp. $\begin{array}{lllll}0-260 \mathrm{v} \text {. at } 2.5 \mathrm{amps} . . . & \ell 6 & 15 & 0 \\ 0-260 \mathrm{v} \text {. at } 5 \mathrm{amps} . . . \text { \&9 } & 15 & 0\end{array}$ $0-260 \mathrm{v}$. at $8 \mathrm{amps} \pm 1410 \quad 0$ $0-260 \mathrm{v}$. at $10 \mathrm{amps} . . . \mathrm{E} 18100$ $0-260 \mathrm{v}$. at $12 \mathrm{amps} . .$. £21 0 $0-260$ v. at $15 \mathrm{amps} . . . \mathrm{E} 55$ $0-260$ v. at 20 amps. ... $£ 3700$ $\begin{array}{llll}0-260 \mathrm{v} \text {. at } 37.5 \mathrm{amps} . ~ . ~ & \mathrm{ct2} & 0 & 0 \\ 0-260 \mathrm{v} \text {. at } 50 \mathrm{amps} . ~ . . ~ & \mathrm{am} & 0 & 0\end{array}$ 20 DIFFERENT TYPES AVAILABLE
 Double Wound Variable
 Transformers
 Fully isolated, low tension Secon$\left\{\begin{array}{l}\text { dary winding. Input } 230 \text { v. A.C. } \\ \text { OUTPUT CONTINUOUSLY }\end{array}\right.$ VARIABLE 0-36 v. A.C.
 $\left\{\begin{array}{r}0-36 \mathrm{v} . \text { at } 5 \mathrm{amp} . \mathrm{s} 9.12 .6- \\ \text { P. \& p. 8/6 }\end{array}\right\}$
 $0-36 \mathrm{v}$. at 20 amp . $£ 21.0 .0$.
 15/-p. \& c.
 These fully shrouded Transformers, designed to our specifications, are ideally suited for Educa- tional, Industrial and Laboratory use.
 500 VOLTS, 500 megohms Price $\mathbf{2} 8$ carriage paid.
 1,000 VOLTS, 1,000 megohms E34 carriage paid.

 5Amp.AC/DC VARIABLE voltage OUTPUT UNIT Inpur 230 V. A.C. Outpur $0-260$ v. A.C. Ourpur $0-240$ v. D.C Fitted large scale ammeter and voltmeter. Neon indicator, fully lused. Strong attractive metal case 15 in . X 8 Z in. $\times 6 \mathrm{in}$. Weizht 8tin. X bin. Weight Ib. Infinitely variable lo. Infinitely variale, smooth stepless voltage smooth stepless voltage variation over range. variaxion over range. Price $\$ 38$ plus $30 /-\mathrm{p} .8 \mathrm{c}$. Price E38 plus $30 /-$ p. \& c. Similar in appearance

 | VAN DE GRAAF ELECTROSTATIC
 GENERATOR
 fitted with motor drive for 230 v . A.C. giving a potentia! of approx. 50,000 volts. Supplied absolutely complete including accessories for carrying out a number of interesting experiments, and full instructions. This instrument is completely safe, and ideally suited for School demonstrations.
 Price E7/7/\%, plus 4/- |
| :---: |
 CONSTANT vOLTAGE TRANSFORMER
 LATEST TYPE SOLID STATE variable controller Ideal for lighting and heating cir cuits, compact panel mounting. Buil in fuse protection. CONTINUOUS LY VARIABLE.
 Input 230v AC ourput 25-230v 5 amp model 5 amp model $f 8.7 .6$ 10 amp model f 13.5 .6
 $$
\begin{aligned} & \text { SPEEDIVAC HIGH VOLTAGE } \\ & \text { HIGH FREQUENCY GENERATOR } \\ & \text { Input } 100 / 110 \text { volts or } 200 / 250 \text { volts ACIDC } \\ & \text { Output I9KV variable. Ideal for testing insu } \\ & \text { lation, vacuum, leakage path, gas discharge } \\ & \text { lamps, neon ete. A useful ozone and HF supply. } \\ & \text { Manufactured by Edwards High Vacuum Led. } \\ & \text { Brand new in maker's polished wooden carrying. } \\ & \text { case. Offered at fraction of maker's price. } \end{aligned}
$$ high frequency generator high frequency generator Input 100/110 volts or 200/250 volts AC/DC Input 100/110 volts or 200/250 volts AC/DC Output 19 KV variable. Ideal for testing insu- lation, vacuum, leakage path, gas discharge Output 19 KV variable. Ideal for testing insu- lation, vacuum, leakage path, gas discharge lamps, neon ere. A useful ozone and HF supply. lamps, neon ere. A useful ozone and HF supply. Manufactured by Edwards High Vacuum Led. Brand new in maker's polished wooden carrying Manufactured by Edwards High Vacuum Led. Brand new in maker's polished wooden carrying Brand new in maker's polished wooden carrying case. Offered at fraction of maker's price. Brand new in maker's polished wooden carrying case. Offered at fraction of maker's price.

SERVICE TRADING COMPANY

SERVICE TRADING CO

RING TRANSFORMER
This multi-purpose Auto Transformer, with
large centre aperture, can be used as a Bouble large centre aperture, can be used as a Double
wound current Transiormer, Auto Transformer H.T. or L.T, Transformer, by simply hand wind He the required number of turns shrough
E.g. Using the RT. 100 V .A. Model the Oue to yive 8 V , 12100 mp . 4 V . Model the output could be wound demonstration transformer (STENZYL TYPE) Two removable coils are tapped at $0,110,220$ volts tively. A composite respec atus designed for class demon stration. Electro magnetic induction, jumping ring induction lamp, relationship
 between field intensity and ampere turns, induction melting, are just a few of the possible experiments. New
modified model. $f 14 / 10 / \%$. P. \& P. $10 / \%$.

AUTO TR 42 v at 12 amps \qquad | Price |
| :--- |
| 61 |
| 64 |
| 6 |
| 66 |
| 64 |
| 66 |
| 67 |
| 66 |
| 65 |
| 67 | AUTO TRANSFORMERS. Step up. step down $110-200-220-240$. Fully shrouded. New. 300 wat P. \& P. 6/6. 1,000 watt type $f^{7 / 2 / 6}$ each, P. \& P. $7 / 6$.

SANGAMO WESTON SYNCHRONOUS GEARED MOTOR
New. Three Types. I R.P.M. I Rev per
hour. 12 Rev per hour. All at $17 / 6$ each,
 p. \& p. 2/6.

230 v. GEARED MOTOR 6 R.P.M. or 10 R.P.M.
230 v. A.C. non-reversible, approx
BELLINO MULTI WAY PLUGS AND SOCKETS 10 way plug and
chassis mounted.) 7 way reversed plug and socker Plug ehassis mounted. (Illuserated.)
 Price: either type $3 / 6$ pair 9 d . P.\&P. IN8ULATED TERMINALS Avalable in black, red, white yellow, bl
$2 /-$ each.

A.C. CONTACTOR

 2 make and 2 break (or 2 c/o) 15 amp. contacts. 2301240 Brand new. 22/6 plus Kit of parts including ORP. 12 Cadmium Sulphide Photocell. Relay Transistor and Clrcuit. Now supplied with new Siemens High Speed Relay for 6 or 12 vole operORP. 12 and Circuit $12 / 6$ post paid.220/240 A.C. MAINS MODEL
 incorporates mains transformer rectifier and special - LiGHit 47/6, plus $\overline{\text { SOURCE }} \overline{2 / 6} \overline{\text { AND }} \overline{\text { PHOTO CELL }}$ MOUNTING
Precision engineered light source with adjustable lens assembly and $01=$ vencilated lamp housing to take MBC bulb. Separate photo cell mounting assembly for
ORP.I2 or similar cell with optic window. Both units are single hole fixing. Price per pair $\mathcal{E} 2 / 15 / 0$ plus $3 / 6$ P. \&P. P- - $\overline{\mathrm{P}} \overline{\mathrm{DE}} \overline{\mathrm{NS}} \overline{\mathrm{ER}}$ - ——— CONDENSERS
$\begin{array}{ll}\text { New at a fraction of maker's price. } \\ 2,500 \mathrm{mfd} .100 \quad \mathrm{v} . . \mathrm{12/6} \quad 4,000 & \mathrm{mfd} . \\ 25\end{array}$

VEEDER ROOT COUNTER 230 v. A.C. 50 cycle 5 figure counter

Ex. W.D. MINIATLRE BLOWER UNIT 18-24 v. D.C. operation. overall lengt

SOLIDSTATEINTERVALTIMER 24-30v. D.C. operation. Stabilised
uni-iunction Timer and S.C.R.
(30 . IAmp.), encapsulated in metal
core. Timing interval adjustable
from a fraction of a second to several core. Timing interval adjustable
from a fraction of a second to several

 resistor or pot. By adding a 24 v . Relay many othe complex timing
circuit, p. \&
LATEST TYPE SOLID STATE DEVICES R.C.A. ${ }^{40432}$ Triac and Diac in TOS can 6 amp, $35 /=$ G.E. P.U.T., OI3, TI, $12 /=$. Texas F.E.T $2 \mathrm{~N} 3819,76$
NEW PLASTIC THYRISTOR 400 PIV 日 amp. $19 / 6$ ine NEW PLA
data sheet.

 Enamel, heavy duty brush assembly designed STOCKIN THE FOLLOWING II VALUES 100 WATT I ohm 10a., 5 ohm 4.7a., 10 ohm 3a., $25 \mathrm{ohm} 2 \mathrm{a} ., 50 \mathrm{ohm} 1.4 \mathrm{a}, 100 \mathrm{hm}$ la., 250 ohm $7 \mathrm{a} ., 500$ ohm - 45 a . Ik ohm 280 mA ., 15 kk ohm $230 \mathrm{~mA} ., 25 \mathrm{k}$ ohm 2a., 5k ohm 140mA., ©lameter 50 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1 \mathrm{~K} / 1.5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K}$ 5 K ohm. All at $21 /-\mathrm{P}$. \& P. P./6.25 WATT $10 / 25 / 50 / 100 / 250 / 500 / \mathrm{K} / \mathrm{I} \cdot 5 \mathrm{~K} / 2 \cdot 5 \mathrm{~K}$ ohm. All at 14/6, P. \& P. 1/6.
Black Silver Skirted knob calibrated in Nos. 1-9. I $\frac{1}{2}$ Black Silver $\$$ kirted knob calibrated in Nos. 1.9. I
In. dia. brass bush. Ideal for above Rheostats, $3 / 6$ each.

- THREE EASY TO BUILO KITS USING XENON WHITE $*$

PARVALUX TYPE SDI9 230/250VOLT AC REVERSIBLE GEARED MOTORS
$\mathbf{3 0}$ r.p.m. 40 lb . ins. Position of
drive spindle adjustable to 3
dife spinderent angles. Mounted on substantial cast aluminium base. Ex-equipment. Tested and in first-class running order. A

DRY REED SWITCHES

 $8 / 6$ per pair. Pose Paid.
6 of the above mentioned units (12 Reeds, 6 coils) ficted in metal box. Size $4 \mathrm{in} . \times 3 \frac{\mathrm{in}}{\mathrm{in} .} \times 1 \frac{1}{2} \mathrm{in}$. Mfg. by Elliote Bros.

MINIATURE UNISELECTOR banks of 11 posicions, plus $24-36 \mathrm{v}$. D.C. operation. Carefully removed from equipment and

UNISEEECTOR SWITCHES NEW 4 BANK 25 WAY FULL WIPER 5 hm coil, $21 / \mathrm{P} . \mathrm{C}^{2}$ Operation.
6 BANK 25 WAY FULL WIPER 25 ohm coil, 24 v. D

NEW SIEMENS PLESSEY, etc. MINIATURE RELAYS AT A HIGHLY COMPETITIVE PRICE			
COIL	WORKING		
@	D.C. VOLT	CONTACTS	PRICE
170	$9-12$	$4 \mathrm{c} / \mathrm{OH.D}$.	$14 / 6$
170	$9-12$	$3 \mathrm{c} / \mathrm{o}+1$ H.D. $6 / \mathrm{o}$	12/6
230	$6-12$	2 clo	$12 / 6$
280	6-12	2 clo insl. base	$14 / 6$
700	$12-24$	2 c/o incl. base	12/6
700	16-24	$4 \mathrm{e} / \mathrm{o}$ incl. base	$15 / 6$
700	16-24	4M 28 inel. base	$12 / 6$
2500	30-50	$2 \mathrm{c} / \mathrm{OH.D}$. incl. base	$12 / 6$
9000	40-70	$2 \mathrm{clo} \mathrm{incl}$.	10\%
H.D. $=$ Heavy Duty POST PAID			

MINIATURE RELAYS

- 12 volt D.C. operation. 2 c/o $500 \mathrm{M} . \mathrm{A}$. contacts zize only in. $x+x \frac{1}{2}$ in. Price $11 / 6$ Post paid.
$30-36$ v. D.C. operation. 2 e/o 500 M.A. contact

230 VOLT AC RELAY LONDE \bar{X} four $\overline{\varepsilon / 0} \overline{3}$ amp ए- - MULTI RANGE 1/ $\sqrt{W / A}$ MULTI R
NEW MODEL U-50D MULT
TESTER, 20,000 O.P.V. MIRROR
SCALED WITH OVER Ranges: D.C. volts: 100 mV .

 Complete with batteries
and test prods.
PANEL METERS AT BARGAIN PRICES A.C. AMMETERS 0-1, 0-5, 0-10, 0-15, 0-20 amp. F.R A.c. VOLTMETERS EACH.

Alush $0-300$ v. A.C. Rect. M-Coil 2tin. 29/0.300 V. A.C. Rece. M-Coil 3\%in. Type W23 45/FOOT SWITCH
Suitable for Motors, Drills, ewing Machines, etc. 5 amp
250 voles. Price $17 / 6$ plus $2 / 6$

230 V. A.C. SOLENOID. Heavy dury sype. Approx 316 , pull. $17 / 6$ plus $2 / 6$ P. \& P. 12 v. D.C. SOLENOID Approx. IIb. pull. 10/6, P. \& P.I/6.
50 v. D.C. SOLENO II. Approx. 116. pull. 10/6, P. \& P. P. $1 / 6$
50 v D.C. SOLENOID.

HIGH FREQUENCY
NEW MODEL
HIGH FREQUENCY TRANSISTORISED MORSE OSCILLATOR Adjustable tone control. Fitted with moving coil speaker morse key. $45 /$ plus $3 / 6 \mathrm{~d}$. p. \& P. $— — — — — —$

SEMI-AUTOMATIC "BUG" SUPER SPEED MORSE KEY 7 adjustments, precision tooled, speed adjustable 10 w.p.m. to as high as desired. Weight $2 \frac{1}{2} \mathrm{lb}$. $\mathbf{6 4 / 1 2 / 6}$ post paid.

NICKEL CADMIUM BATTERY 1.2 v. 35 AH. Size 81 high $\times 3 \times 1 \%$. $30 /=$ each, plus $4 /$ sintered Cadmium Type 1.2 v . 7AH. Size: height $3 \frac{1}{2} \mathrm{in}$. Tested $12 / 6$. P. \& P. P. $2 / 6$. 34R SILICON SOLAR CELL
(2020 $4 \times .5$ vole unie series connected, output up to 2 V .

Is this your man in Munich?

Dunkelbräu, weisswurst, all-night carousing Oktoberfest comes only two weeks a year, but business in Bavaria slows down to a walk. Import agents everywhere do take time out to observe local holidays and customs. And they do have other clients to accommodete as well as you. Face it : nobody can promote your sales more cheaply, consistently and convincingly than you yourself. And nobody can help you reach your worid markets better than I.B.P.A

IBPA is the biggest international publishing complex in the world. Represen:ing an investment of over $£ 7$ million by the international Publishing Corporation, it comprises nine companies, centred in the key business areas ol Europe, USA, and South East Asia. Between them they produce 320 publications* covering virtually every trade and technical field capable of supponting a journal.

I 8PA puts at yourd sposal all the marketing and advertising know - how of some of the world's mast successful publishing companies. It offers you as many journals in as many industries in as many countries as you wish to cover and makes it all easy with one point of contact, one payment, free translations, and group discounts (extended to regular advertisers in IPC Business Press journals in this country).

You'll sell more abroad through

Ibpa

The U.K. Office of IBPA is IPC Business Press (Overseas) Ldd. *IBPA is growing all the time. We've just produced another feaflet that describes all the old and new IBPA Overseas journals. For your free copy contact Ooug. Jens Smith, 161-166 Fleet Street. London E.C.4. Tel: $01-353.5011$

PARVALUX TYPE S/D23 GEARED MOTORS. 240 v . A.C. I RPM. $14 \mathrm{lbs} / \mathrm{in}$. Also 240 v . A.C. 2 RPM. $11 \mathrm{lbs} . / \mathrm{in}$. Continuous rating. Standard foot mounting. 64.15 .0 each. P. \& P. 10%

NEW "CARTER ELECTRIC" 12 r.p.m. MOTOR,Non-reversible, $t^{\prime \prime}$ spindle. 240 v . A.C. Open frame with cast aluminium cased gearbox. Stoutly
constructed. Approx. 25 lbs./in. Overconstructed. Approx. $25 \mathrm{lbs} /$.in . Over-
all size (approx.) $3^{\prime \prime} \times 3^{\prime \prime} \times 4^{n}$ plus
 all size (approx.)
spindle. $45 /=$. P. \& P. 5/

NEW "MYCALEX" 240v. A.C. 115 r.p.m. MOTOR. -Similar to above (12 r.p.m.) but flat rectangular gearbox. Overall size (approx
Few only. $45 /-$ P. \& P. $5 /=$.

English Electric \& h.p. Motors. 240v. single-phase, standard foot mounted, 1,425
rating. E4.15.0. Carrlage 20/.

Isolation Transformers. I to I ratio. 240v. input, 240v. centre capped out, at 2 K.V.A., mounted in metal case

SCHRACK ROTARY STEPPING RELAY RT304 48 v . coil (28 ohm). The relay has 48 basic segments shorzed in step by the 4 sweep contacts to 4 poleplates (banks of 12). There are 2 secondary switches:
(1) one c/o H/Duty contact set which changes over and back with each step; (2) two H/Duty changeovers which change over on each 12 th

following pulse. Size: Base $3 f^{\prime \prime} \times 1 z^{\prime \prime} \times 44^{\prime \prime}$ high. New in maker's packing, also, as above, but 110 v . $(1,290 \mathrm{ohm}$ coil), $\mathbf{~ 4 . 1 5 . 0 ~ e a c h . ~}$
Welwyn high value Resistors Type GA 36501. Values between 9.4 and 10.9 kilo-meg $\pm 1 \%$, glass encapsulated $15 /$.
"WELWYN" RESISTORS.-Type HI2. One value only. I kilo-mes $\pm 20 \%$. $5 /$ each. (Minimum order 2.)

THORN ILLUMINATED PRESS SWITCH for 250 v . operarion. M.E.S. circuit. Very robust. Length 44.5 mm . dia. 30.5 m
$10 / 6$ each.

THORN DIGITAL INDICA-
TOR designed as a modular unit

with 12 lamps, choice of following ratings 64.0 .1 A . or $12-14 \mathrm{v}$.
 24/- per dozen.

 $9.1 \times 3.1 \mathrm{~mm}$, Ideal for instrument lighting normally sold
in excess of $12 /-$ each, our price $30 /$ per dozen or boxes of
50 at $f 5$ per box ATLAS MIDGET PANEL LAMPS Un rivalled for indication purposes requiring
brilliant but tiny light source. Available with flange cap or wire ended in the following Patings: Capped: 2ncapped: 4v. 25A.; $6 v .11 \mathrm{~A}$. Vv . 2 A

 MIDGET PANEL LAMPS (as above) available red, green
"DECCO" MAINS SOLENOID. Compace and very powerful. 16 lb . pull i" travel which can be increased to I" by removing captive-end-plate. Overall size $2^{\prime \prime} \times 2 \frac{1^{\prime \prime}}{} \times 23^{3 n}$ high. $35 /$. P. \& P. $5 /$

New "Magnetic Devices" solenoid 240 v . A.C. Type 42117 I to 3 lb. pull, frame size 1 ² $^{-7} X$ $1 \frac{1}{4} \times 1$ ". 20/- each.

"AUTOMATIC ELECTRIC" ENCLOSED RELAYS $6 \mathrm{v} .50 \Omega 2 \mathrm{c} / \mathrm{o}, 12 / 6$
$24 \mathrm{v}, 47004 \mathrm{c} / \mathrm{o}, 13 / 6$ 24v. $470 \Omega 4 \mathrm{c} / \mathrm{o}, 13 / 6$ $48 \mathrm{v} .1,2600 \mathrm{c} / \mathrm{c}, 15 / \mathrm{c}$

NEW "F.I.R.E." PLUG-IN RELAY-llisv. Coil 50/60 c.p.s. 3 heavy duty silver change-over contacts. Very robuse. 17/6.

NEW DIAMOND "H" 240v. A.C RELAY, 3 heavy ducy silver changeover contacts. $17 / 6$.

"TEDDINGTON" CONTROLS
THERMOSTAT. CAdjustabls THERMOSTAT.-Adjustabl
between 75° and $100^{\circ} \mathrm{C}$. A furthe between 75° and $100^{\circ} \mathrm{C}$. A furthe
internal adiuster takes the maximu 48 to $120^{\circ} \mathrm{C}$ Circuit cuts in again . ${ }_{3}^{48}$ below cut-out setting. $42^{\prime \prime}$ capillar and sensor probe. The thermost actuates 215 amp. $250 v$ clo 8 switc A second single pole on/off switch incorporated in she adjustmen
mechanism. $17 / 6$.
American "Powerstat" Varlable Voltage Transformer by Superior Electric Co. Input 120 v . $50 / 60$ C.D.s. Output $0-120 \mathrm{v}$, at 2.25 amps . '" spindle with alternative pre-set locking device. Size (approx.) $3^{\prime \prime}$
dia. $\times 2^{\prime \prime}$ long. First class condition. $£ 2.15 .0$. P. \& P. $5 /$-. Berco Rotary "Regavolt," variable voltage transformers input 240 v . $50 / 60 \mathrm{cps}$., ourpur $0-240 \mathrm{v}$. C.T. at 6 amps. Not new, bu
$\mathbf{E B . 1 0 . 0}$, P, \& C, $10 /$.

WE WELCOME OFFICIAL ORDERS FROM ESTABLISHED COMPANIES, EDUCATIONAL DEPTS., ETC.

SYLVANIA MAGNETIC SWITCH-a mag netically activated swiťch operating in a vacuum. Switch speed-Ams. temperature - 54 so +
$200^{\circ} \mathrm{C}$. Silver contaces normally closed rated $200^{\circ} \mathrm{C}$. Silver contaces normally clesed rated 3 amps. at 120 v . 1.5 mpp . at 240 v . $10 /$ e each. or over. Reference Magners available $1 / 6$ each.
 Co. Size: Length $\mathbf{z}^{\prime \prime}$ dia. $9 / 16^{\prime \prime}$ (including mount). Please state vertical or horizontal mount and voltage. 62.5.0 each.

New 75-0.75 Microammeter by Sifam. 750 ohm movement, clear reading, $5: 12$ divisions \times "'; plastic front, projection " (rapering forward). Size:

Ernest Turner $5^{\prime \prime} \times 4^{\prime \prime} 0-1 \mathrm{Ma}$, meter callbrated $0-10 \mathrm{in}$ 50 divisions mirrored scale, handsome chrome escutcheon for flush mouncing. A quality inserumene. ©6.10.0.

MINIATURE

B.P.L. 500-0-500 Micro-Ammeter. 13/16" Diam. scale. Through-Panel mouncing, 45/=.

Motor Driven Variable Voltage Transformers by Ohmite
(U.S.A.). Input $120 / 240 \mathrm{v}$. $50 / 60$. (U.S.A.). Input $120 / 240 \mathrm{v} ., \mathrm{S}$
c.p.s. Output $0-240 \mathrm{v}$. at 480 v . A reversible $115 v . a . c$. geared motor drives the contact sweep arm in the direction required. There is a miero
switch mounted at each end of the switch mounted at each end of the
erack which is eam-operated and intended to be connected as a safety-stop. First class condition. $\mathbf{6 8 . 1 5 . 0}$. P. \& P. 10%.
"HONEYWELL" MICRO.
SWITCH, Single and double
bank, manual-push. Ideal for
vending machines, eec. Each
bank comprises a change-over
ared is amps. 240v. A.C. The
hrough-panel mounting assem-
aly is in heavy polythene sur-
nounced by .black knob. Neck
11a. i". Single lo/- each. Double
15/. each. Also few only 3 bank.
20/- each.
"HONEYWELL" V3 SERIES.-
Flush mlcro-swltch 10 amp. c/o. The
side panel is insulated. End-platesize:
$2^{" \times 1}$ ". $36 /$ per doz.

WONEYWELL" MICRO. bank, manual-push. Ideal for vending machines, etc. Each ated 15 amps. 240 v . A.C. The aly is in anel mounting assem nounced by black knob. Neck S. each. Also few only 3 bank
\qquad
"HONEYWELL"TYPE 23AC-Ne - 15 amp. change-over switch is fitt
on angled metal mount with spri, loaded plastic rod operating car 10/- each.

"Tansitor" (U.S.A.) Tantalum, Wet Sintered Anode

 end. All types $5 /-$ each. Also few only, Tansistor "MICRO-
MOULE" capacitors 0.2 Mfd. 15 v , wire-ended, size: $3 / 32^{\circ}$ dia. (dise) 5/- each.

WHERE NO CARRIAGE CHARGE IS INDICATED PRICE IS INCLUSIVE. PERSONAL CALLERS WELCOME.

TA aero services lid

INTEGRATED CIRCUIT

 AMPLIFIERSCA3005 RF Amplifer with $100 \mathrm{mc} / \mathrm{s}$ bandwidth．Max．disipation 26 mW ．For use as RF amplifier，balanced mixer，product detector or self－osctllating mirer．
CA3012 Wide Band Amplifier（up to $20 \mathrm{mc} / \mathrm{s}$ ），suitable as IF Amplifier for VHP／FM recelvers．
CA3020 General Purpose Audio Amplifer of 550 m W output．30／－ CA3038 Buffer Amplifer consistigg of two＂super－alpha＂paif of
transistors fultable for stereo pick－up esstems． The above four I．C＇E are to TOS encapsulation．
PA222 Audio Amplifer providing a max．output of 1.2 wattr．65／－ PAz34 Audlo Amplitier providing a max．output of 1 watt．27／6 PA237 2 watta Audio Amplifer．

MC1700CG General Purpose operatlonsl amplifer in TO－99
TAA293 3－stage ampliner with connection brought out to the output 10 mW into 150Ω lond． $20 /-$ TAA320 mOst input atage followed by abi－polar tranifistor uage． 200 mW dissipation．
TADI 00 All active componente required for an A．M．Recelver， comprisiug mixer，oscillator，i．f．ampliter，a．g．c．and pre－ampllifer stagen．To bulld complete recelver only colls，capacitors and deacribed L．C．a can be used．Dual seven－Lp－line package．45／－ Dats sheet available for all the above I．C．s．－－free with I．C＇s or Data sheet avallabie for all the above $1 /$ per data sheet if ordered separately．
Plestes sl403A
49／6

TRANSISTORS

N	16／－					
$2 \mathrm{~N} 412 \mathrm{~L} / \mathrm{6}$		AC127 5／8	ABY	4／6		
2N＋44A	$2 \mathrm{~N}_{2} \mathrm{H}_{2}$	AC128 4／6	RC107	$3 /$.		
2 N 698	2N	$\mathrm{ACl} 192^{7 / 6}$	BCl0s	$3 /$		
2－697	3／－	ACl153	BCl		Oc	
2 N 698		AC15 ${ }^{\text {a }}$ 3／－	BC11	$8 / 6$	－	
2 N 70515	－	$\mathrm{ACl}^{\text {a }}$ 8／－	BC118		OC2	
2 N 70 Hz		AClis 2／－	BC1 37	4	Oc2	
${ }_{2}^{2 N} 708$		${ }^{\mathrm{ACl}} 1788^{8 / 8}$	${ }_{\text {BCi }}$	3／3	0	
${ }_{2}^{2 N 7} \mathbf{2} 916$		ACY17 ACY18 4／．	BC1		UC2B	
16	3／－	ACY18 ACY19 $4 / 9$	${ }_{\text {BCl }}$		OC	
${ }_{2} \mathbf{N} 980$		${ }^{\text {ACY } 20 ~ 4 /-~}$	${ }_{8 C}^{\text {BCl }}$		0 C	
987		ACY21 3 ／11	BCy			
1131	2 NaO 36	ACY22 $2 / 8$	BCY33			
2×11328	2N3133 7／＝	AD140 16／－	BCY34			
${ }_{2}^{2 N 118425}$	${\underset{2 N}{2 N} 3133}_{2 N}^{2 N} /$	ADl49 12／6．			＋2	
$\begin{aligned} & 11: 201 \\ & 11: 302 \end{aligned}$	3134 818				C45	
2N1304 4／6	3391	API02 15／6			0c71	
		AF	BD		73	
2 N 130 H					75	
2N1307	2N 33955	$\begin{array}{ll}\text { AF116 } & 5 / 6 \\ \text { AF117 } & 4 / 8\end{array}$			76	
1309	2 N 3402	AFl18 10／0	BF			
$2 \mathrm{N1711}$ 6／－	2 N 3408 b／－	A P125			881	
2N1756 15／－	2N3304 8 8／6	AF126	BFI94	$3 / 6$	81	
2 N 214	2N3415		BF1	$3 /$		
602	2 N 3416	AFI86 11／＊	BF19		硡	
$\begin{array}{r} 2160 \\ 2217 \end{array}$	2N：317	AF239 10／－	8		C139	
2 N 2218718	2N37102	APY19 $29 / 8$			clit	
2 N 2219818			BFY18			
A	3705 5／6		Y19			
2N2477 $4 / 8$	2×3707 4／0	A8Y27 ${ }^{\text {6／6 }}$	Bryso		c201	
477	$2 \mathrm{~N} 37093 / 5$	AsY28 ${ }^{6 / 6}$	BFY61	4／8		
	2N3710 3／－	ABY29	BFYB2		OC203	
2 N 2646	2＊3819 12／－	A		0		6／
	2 N \％以1 6					
	AC113 3		Y27			

FULLY
 GUARANTEED

\qquad

जムれで

FIRST QUALITY
VALVES

Please supplied

WHEN ORDERING BY POST PLEASE ADD $2 / 6$ IN $\&$ FOR HANDLING AND POSTAGE．
ALL MAIL ORDERS MUST BE SENT TO HEAD OFFICE AND NOT TO RETAIL SHOP．

Tel．：PARK 5641／2／3 Cables：ZAERO LONDON
Retail branch（personal callers only） 85 TOTTENHAM COURT RD．，
LONDON W．2．Tel：LANgham 8403

WE WANT TO BUY：
special purpose valves．please offer us SPECIAL PURPOSE VALVES．PLEASE OFFER US
YOUR SURPLUS STOCK．MUST BE UNUSED．

APPOINTMENTS VACANT

DISPLAYED SITUATIONS VACANT AND WANTED: £7 per single col. inch.
LINE advertisements (run-on): 8/- per line (approx. 7 words), minimum two lines.
Where an advertisement includes a box number (count as 2 words) there is an additional charge of $1 / \cdot$. SERIES DISCOUNT: 15% is allowed on orders for twelve monthly insertions provided a contract SERIES DISCOUNT
BOX NUMBERS: Replies should be addressed to the Box number in the advertisement, c/o
BOX NUMBERS: Replies should be addressed to the Bo
Wireless World, Dorset House, Stamford Street, London, S.E.1.
Wireless World, Dorset House, Stamf
No responsibility accepted for crrors.

SENIOR TELEVISION TECHNICIAN

is required to be responsible for facilities in a small wired TV Systems Laboratory. He should be conversant with Colour Television Receivers and will be responsible for the maintenance of specialised test equipment. Other duties will include maintenance of records and equipment movement control. Qualifications in R.T.E.B. and Colour Endorsement or H.N.C. desirable
Good prospects of promotion for a keen young man with initiative. Salary negotiable up to £1,500 p.a depending on qualifications. Training can be given. Subsidised canteen.
Write, giving details of past experience 10 :
Head of Operational Services Dept.
Rediffusion Engineering Ltd.
187 Coombe Lane West
Kingston-upon-Thames, Surrey
rel: 01.9426641

technical instructor

(radio/radar)

We have a vacancy in our Engineering Traming Branch for a man with a combination of technical expertise and teaching ability. If you have

* An Aeronautical/Engineering apprenticeship or equivalent standard of training.
- At least 5 years practical experinnce in the maintenance of Aircraft Radio and Radar installations.
* A marked ability to express yourself both verbally and in writing.
* A keen interest in training and training technology
then you could be our man. If you also have.an Aircrat Radio Maintenance Engineers licence or a teaching qualification you are even more likely to be our man.
The vacancy is at our superbly equipped training centre at Heston.
The salary starts in the range $£ 1,750$ £2,000 and the successful applicant could expect to progress fairly rapidly to as high as $£ 2.900$.

313.

Write now to:

Personnel Officer Engineering
(General) (W.W.)
BEA Engineering Division,
Engineering Base,
Heathrow Airport-London,
Hounslow, Middx.
EKCO AVIONICS (A Division of Pye Telecommunications Ltd.)
rest =ngineers

Looking Ahead?

At Solartron we place great emphasis on the importance of career planning and development and we are concerned that people who consider joining us should be aware of the opportunities available to them.

Not only can we offer enormous scope for Test Engineers over a wide range of product lines but we also believe that they will be looking for moves into other areas of the company's activities in order to achieve greater flexibility and promotion.

Vacancies currently exist in the following areas:

- Dynamic Analysis
- Digital Voltmeters
- Oscilloscopes

Promotional moves can be made at a later date into:

- Test Gear Development
- Quality Engineering
- Technical Sales
- Technical Writing
- Contract Engineering
- R. and D.

Our present vacancies would suit young men, preferably with experience of modern digital and/or analogue techniques, who have a technica background equivalent to that of Inter. C. and G. (Telecomms.) or Radio and Television Servicing.

Experience of test work or of television servicing would be very advantageous

We can offer rates of pay up to $£ 1,200$ per annum exclusive of overtime.

If you are looking for a successful career in electronics we would be pleased to talk to you. Please write or telephone for an application form to

R. D. Scambler,

Senior Personnel Officer, The Solartron Electronic Group Ltd., Farnborough, Hants. Tel: 44433

Rank Pullin Controls is a precision mechanical and electronic manufacturing company within the Industrial Division of Rank Precision Industries Limited. The R \& D Department's current programme includes advanced sonar, metal and foreign body detection work, also research equipment developed for oceanography. The Company's plans require the R \& D Department to expand substantially in the next two years in both M.O.D. work and commercial products.
Vacancies exist for:-

Senior Electronic Development Engineers

These vacancies will interest young engineers who are ready to take responsibility (including financial aspects for parts of projects) and who will advance to Principal Engineers. Applicants should be aged $23+$, have a degree, H.N.D or H.N.C.. and at least two years' relevant experience. Salary up to $£ 2.250$ according to age and experience.

Electronic Servicing and Test Engineer

To start a team for commissioning, servicing and maintaining in the U.K., experimental electronic equipment built in the Department. Applicants should be aged $23+$. with H.N.C. or equivalent, and some years experience with solid state electronic equipment. Salary up to $£ 2.250$ according to age and experience.

Draughtsmen

(electro-mechanical and Printed Circuit)
To work in close co-operation with senior engineers on the design of sophisticated electronic equipment employing the latest techniques of electronic packaging. Applicants should be aged 26-40 years, with O.N.C. Electrical or Mechanical (C \& G would be considered) and electronic or electromechanical experience.
Salary $£ 1.400-£ 2,000$ according to age and experience.

Technical Assistants

To build and test breadboards and prototype electronic equipment. Applicants should be over 21 years with O.N.C., and experience with wiring and testing electronic circuits. Salary up to $£ 1.400$ according to experience.

The Company offers favourable career prospects within the Organisation. There is a contributory Pension Scheme and free Life Assurance. There are many other staff fringe benefits including first class catering on site. Relocation assistance will be considered.

Write or telephone during office hours: The Personnel Manager, Rank Pullin Controls, Phoenix Works, Great West Road, Bremford, Middx. 01-560 1212
Evenings: Mr. I. W. D. Cox
Gerrards Crass 83227.

THE STOCK EXCHANGE, LONDON

 require an additional
Television Service Engineer

to maintain a closed circuit television system recently commissioned for the display of market prices. Applicants must possess appiopriate television and radio servicing certificates and must be able to prove their ability as competent Service Engineers by a suitable trade test.
An attractive salary is offered in the region of $£ 1,500-£ 1,600$ per annum. In addition, there is a non-contributory pension scheme, 3 weeks holiday in a full year and 3 s . luncheon vouchers.
Applications giving brief details of qualifications and experience should be sent to :
Personnel Officer.
Council of the Stock Exchange,
The Stock Exchange Building.
London EC2.

wants

MAINTENANCE TECHNICIANS

[^20]
APPOINTMENTS

RADIOENGINEERS CIVIL AVIATION-ZAMBIA

* Salary £2310 to £2590 according to experience.

\author{

* Low Taxation.
}
* Contract of 36 months.
* 25\% Tax-free Gratuity.

\author{

* Educational Allowances.
}

Duties will involve the maintenance, overhaul and installation of ground terminal radio communication equipment and navigational aid at Airports and Flight Information Centres.
The equipment includes radar systems, H.F. and V.H.F. transmitters and receivers, I.L.S. and D.F. systems and tape recorders. Candidates, who should be under 55 years of age, should have practical experience and a knowledge of theoretical principles within this field.
In addition they should have attained one of the following:-
i) completion of a 5 year apprenticeship,
ii) a service trade certificate,
iii) an I.C.A.O. certificate,
or iv) equivalent.

Apply to CROWN AGENTS, ' M ' Division, 4, Millbank, London, S.W.1., for application form and further particulars stating name, age, brief details of qualifications and experience and quoting reference No. M2Z/690315/WF.

SCIENCE RESEARCH COUNCIL

RADIO AND SPACE RESEARCH STATION EXPERIMENTAL AND ASSISTANT EXPERIMENTAL OFFICERS
are required for investigations of the propagation of radio waves through the troposphere and ionosphere, and for space research activities overseas.
At Slough duties will include the development of electronic and other apparatus, performance of experiments and the processing and analysis of results. Much of the current work is directed towards the improvement of communications particularly by studying the propagation of centimetre and millimetre waves. Experiments are carried out using rockets and satellites to study the upper atmosphere.
Suitably qualified staff may spend a tour of duty of up to 3 years' duration in the Falkland Islands to operate and maintain radio telemetry equipment for the reception of data from satellites.

QUALIFICATIONS

University or CNAA degree, HNC or equivalent qualification. If under 22 years, five G.C.E. passes including two science or mathematical subjects as " A " level or equivalent.
Experimental Officers are normally expected to be 28 years of age with several years' relevant experience.

SALARIES

Assistant Experimental Officer: f 683 at 18 years, f 940 at 22 years, $£ 1,208$ at 26 years, rising to a maximum of $£ 1,454$ p.a. Experimental Officer: between $£ 1,590$ and $£ 2,006$ p.a. These pay scales are subject to an $8 \frac{1}{2} \%$ increase with effect from 1 April, 1970.
Non-contributory superannuation scheme.
Apply:
The Secretary, Radio and Space Research Station,
Ditton Park, Slough, Bucks. Telephone: Slough 24411
Closing date : 29 May, 1970.

It's Racal 'quality year'

And we are looking for good quality

Test Equipment and Calibration Engineers

to help us maintain our standards of
Test Equipment service.

Specification :-

Wide general experience
Good knowledge of circuit applications
Experience with H.F. S.S.B. Communications Test Equipment
Optional Extras:-
City \& Guilds or O.N.C. or H.N.C
Power Consumption:-
£1100-£1300
Applications in writing please stating Ref. No. B1000 10:-

THE ELECTRONICS GROUP
Western Road, Bracknell, Berks.

Go places as a Computer Service Engineer

Men under 35 with experience in light engineering and electronics can build excellent careers in ICL servicing computers.

We want qualified men with HNC or C \& G in electronics engineering, or a Forces training in electronics. Or, perhaps, you have a similar qualification which provesyou have the seriousinterest in the subject necessary for further specialist training.

We pay realistic salaries while you trainabout six months-on ICL equipment, learning how to sort out operational problems and maintain computers in peak condition.

You will have to take responsibility for highly sophisticated and expensive equipment, so if you have a worth while career in mind, here is the chance to apply your expertise and initiative to the full. Career progression and promotion are limited only by your ability.

On top of your basic salary we pay generous overtime and shift rates, plus travelling expenses. Working conditions in ICL are well above the average in industry.

Write giving brief details of your career, quoting reference WW io3 C. A. E. Turner, International Computers Limited, 85/91 Upper Richmond Road, Putney, London SWis.

required for interesting opportunities in manufacturing. Previous manufacturing experience not required, but applicants should have a sound knowledge of servicing transistorised distribution equipment. Excellent salary and prospects with Britain's leading distribution manufacturer

Write stating age and experience to
Miss S. Holden, Personnel Officer, TELENG LTD.,
Arisdale Avenue, South Ockendon Tel: South Ockendon 3477 Ext: 52

combintrer engincering

NCR requires additional ELECTRONIC, ELECTRO MECHANICALENGINEERS and TECHNICIANS to maintain medium to large scale digital computing systems in London and provincial towns.
Training courses will be arranged for successful applicants, 21 years of age and over, who have a good technical background to ONC/HNC level. City and Guilds or radio/radar experience in the Forces
Starting salary will be in the range of $£ 900 / £ 1.250$ per annum, plus bonus. Shift allowances are payable, after training, where applicable. Opportunities also exist for Trainees, not less than 19 years of age, with a good standard of education, an aptitude towards and an interest in, mechanics, electronics and computers.

Excellent holiday. pension and sick pay arrangements. Please write for Application Form to Assistant Personnel Officer
NCR, 1,000 North Circular Road,
London. NW2
quoting publication and month of issue.

CONTINUOUS EXPANSION are growing fast. In order to keep pace with this consistent growth rate we require the following

Installation Engineers Technicians \& Testers

 Ref. 25720To test and commission Multiplex, Co-axial Line and Microwave Radio Systems.
Ideal candidates will be less than 45 years of age with practical experience on some of the above equipment. These challenging posts call for drive, initiative and common sense. It is necessary for applicants to be prepared to work anywhere in the U.K.

Applications should be addressed to The Personnel Officer. STC Chester Hall Lane, Basildon, Essex.

Test Technicians

Ref. 27221
The diversity of products manufactured at the Basildon Plant demands experienced testing staff for work on complex transmission systems.
Candidates should hold an ONC in electrical engineering and be able to offer considerable practical experience in the field of testing and fault clearing all types of land-unit, pem and microwave equipment.

AIR FORCE DEPARTMENT

RADIO TECHNICIANS

Starting pay according to age, up to $£ 1,295$ p.a. (at age 25) rising to $£ 1,500$ p.a. with prospects of promotion.

Vacancies at RAF Sealand, Near Chester and RAF Henlow, Bedfordshire
Interesting and vital work on RAF radar and radio equipment.

Minimum qualification, 3 years' training and practical experience in electronics.

5-day week-good holidays-help with further studies-opportunities for pensionable employment.

Write for further details to:
Ministry of Defence, CE3h (Air), Sentinel House,
Southampton Row,
London, W.C.1.

VISUAL SYSTEMS ENGINEERS

THE JOBS

Project \& Systems Engineering on Advanced Training Aids for Aircraft.

THE MEN

Electronic Engineers preferably H.N.C. or B.Sc. having had practical experience in one or more of the following fields. Flight test, Auto Pilot, Weapons Control, General Process Control, Instrumentation, Systems Design, Colour Video, Systems Maintenance and Design, with a keen desire to learn new techniques and applications.

THE REWARDS

A salary up to $£ 2,000$ per annum. High job interest. Opportunity to work on complex systems incorporating digital and analogue computers, associated peripherals, colour television systems and servo systems as a member of a team. Opportunity to fly and operate simulated aircraft and other equipments.

High quality training will be given.

OTHER BENEFITS

Our terms and conditions of employment are good and include contributory pension scheme, free life assurance, etc. We are not merely offering posts which will afford candidates opportunities of attaining a good job. Selected candidates will be offered long-term careers. Opportunities for occasional overseas travel, etc.
Apply, quoting reference WW/170 to. H. C. Hall, Personnel Manager, REDIFON LIMITED
Flight Simulator Division
Gatwick Road, Crawley, Sussex
Tel: Crawley 28811

BBGty HOLIDAY RELIEF ASSISTANT FILM RECORDISTS

BBC Film Operations require Assistant Film Recordists on limited contracts for Holiday Relief duties during the summer months. Initial Contract will be for two months but may be extended as circumstances demand on a month by month basis.

> Duties involve the operation of sound transfer equipment. also working in the recording rooms of dubbing theatres. Candidates must have some professional experience in film sound transfer and recording work, a good technical knowledge of sound recording practice and an understanding of the principles of cinematography. Work will be on a day or shift basis (not night shifts). Salary will be in the range of $£ 1.260$ to $£ 1.404$ per annum depending upon qualifications and experience. Based Ealing or Shepherds Bush.

> Write for application form (enclosing addressed foolscap envelope and quoting reference 70.G.615) to Appointments Department, BBC, London W1A 1AA by April 28th.

RADIO TECHNICAL OFFICERS

Earnings up to $£ 2,000$ p.a.

The P.L.A. operate a wide telecommunications network from Tower Pier to the outer Thames Estuary, and vacancies exist at Gravesend and King George V Dock for Radio Techuical Officers to maintain the equipment at maximum efficiency. To ensure adequate coverage, a shift system is operated.
Salary scale:- $£ 1,280$ to $£ 1,520$ p.a.-plus an allowance for week-end and public holiday working, where applicable. Payment at enhanced rates is made for overtime working when required. Earnings of up to $£ 2,000$ p.a. are possible.
Minimum qualifications:-
O.N.C. Electrical Engineering
or City \& Guilds Intermediate Certificate in Telecommunications Engineering plus Radio II
or equivalent Service qualifications.
Applicants should have at least 5 years' experience in two of the following fields:-

* V.H.F. and U.H.F. Radio
* Radar and Microwave Links
* Telemetry and Digital
* Telephone exchange equipment
\star and land lines.
Application forms maly be obtained from:-
The Chief Engineer (Personnel)
Port of London Authority,
P.O. Box 242,

Trintty Square,
London, E.C. 3 .

A Member Company of the Rediffusion Organisation

Electronics Maintenance Engineers

There are excellent opportunities in the Installation and Maintenance Division of U.K Electronics and Industrial Operations of E.M.I Ltd., at Hayes. Middlesex, for engineers to carry out maintenance work on a wide variety of electronic equipments including laboratory test gear and trans-ceivers.

Candidates should be between 21 and 45 years of age and have some experience in this type of work. Consideration will be given to experienced Radio and Television servicing technicians and to ex service personnel.

Commencing salaries of up to $£ 1 ., 500$ per annum will be paid and staff conditions include contributory pension scheme and free life assurance.

Please apply in writing giving brief personal and career details to:
G. W. Fox, Personnel Department, U.K. Electronics \& Industrial Operations, E.M.I. Ltd., Blyth Road, Hayes, Middlesex. Tei: 01-573 3888, Ext. 411.

Applicants are invited for the post of
JUNIOR TECHNICAL OFFICER
with the MEDICAL RESEARCH COUNCIL. Duties will include the construction, maintenance and development of electronic equipment and assistance in observations on normal subjects and petients occesionally during neurosurgical and partions. Training in metal workshop practice operations. Training in molal practice would be an advantage. Male candidate aged 21-26 with ON.C. H.N. or equivalent will be considered.
Salary in range plus $£ 90$ London Weighting. Applicants should give details, of age, qualifications and experience to: Dr. J. A.V. Bates, National Hospital for Nervous Diseases, Queen Square, London, W.C. 1

490

TiIS
 UNIVERSITYOE LEEDS

Applications are invited for a post in the following Department:

PHYSICS

EXPERIMENTAL OFFICER/
SENIOR EXPERIMENTAL OFFICER
The successful applicant will be responsible for the design of a wide range of electronic apparatus covering DC and pulse amplifiers and digital recording systems. Minimum qualifications: Degree in Physics or Electrical Engineering together with appropriatc experience.
Closing date 30th April 1970.
SALARY SCALE:
Experimental Officer $\mathbf{\text { 2 }} 995$ - $\mathbf{2} 2,235$.
Applications giving age, qualifications and experience, logether with the names of two referees should be sent to the Administrative Assistant, Physics Deparıment, The University, Leeds LS2 9JT Please quote reference number $\$ 91$.

Semior Sustems Enininerrs

With continued expansion the Digital Systems Department has vacancies for Senlor Systems Engineers.
The Man. Applicants should preferably be graduales with engineering or science degrees or equivalent qualifications. Experience in one or more of the following fields is desirable :\square Digital computers and their application to real time digital computer systems. \square Digital computer peripherals. \square Military defence systems, including fire control systems. \square Radár and synthetic display systems. \square Surveillance and tracker radar systems. \square S.S.R. systems. \square Servo systems.
The Job. The work involves conducting technical negotiations with potential customers, carrying our System Design Studies and preparing technical proposals. The successful applicants will be based at Bracknell and travel in the U.K. and abroad will be necessary.
This appointment carries a high degree of personal responsibility and requires the ability to hold discussions with military and civil personnel at a very senior level. The Digital Systems Department is situated in pleasant countryside surroundings. Working conditions and holiday arrangements are excellent. The Company operates a contrlbutory Pension and Dependants Assurance Scheme. Promotional prospects are excellent.
Write giving brief detalls and quoting reference D/109/w.w to :-
Mr. D. J. O'Connor, Personnel Officer, Ferranti Limited,
Western Road, Bracknell, Berks. or telephone
Bracknell 3232.
FERRANTI

technicians

- join a success story

Everybody appreciates success. Three years ago when our development labs started work on a completely new range of Mobile Radio equipment we were on to a winner. Launched last year, we now have the most advanced compact and competitive equipment on the market. Our problem now is to ensure that the quality of our products and our maintenance and service is as good as our design. We need Testers and Service Engineers to help.

test:

Based at a temporary site near Watford. Testers will transfer to our new factory between Radlett and St. Albans when it opens towards the end of this year.

Duties include testing. fault finding and alignment on UHF pocket phones and base stations. Senior testers will also take on systems test and trouble shooting work.

service:

Based at New Southgate-one vacancy at Croydon-service engineers are responsible for the repair and maintenance of our complete range of UHF and VHF equipment. A clear driving licence is essential as some local travel is involved.
If you have experience of test or servicing radio equipment this is your chance to link your success story with ours

Write or phone
T. G. Anderson, Asst. Personnel Manager,

Standard Telephones and Cables Limited,
Oakleigh Road, New Southgate, N. 11.
01-368 1234, ext. 2578.

Very IMPORTANT to YOUVery IMPORTANT to DYMAR TEST ENGINEERS with a FUTURE

DYMAR is an independent rapidly immediate major export success of over expanding Company with long term plans $\$ 250,000$ to the U.S.A., providing secure and a very impressive order book for VHF and interesting work, with high value and communications equlpment, including an responsibility placed on the individual.

- Salaries negotiable to earn real money for real experience.
- Continuous expansion, new additional premises, creating immediate and future supervisory positions.
- Company assistance for continuation of technical education.
- Three weeks annual holiday rising to four with service.
- Ample opportunity for overtime.
- Free pension scheme with free life assurance.
- Subsidised canteen facilities - modern working conditions.
Contact John Cybulla by letter or telephone - reverse charges:- Watford 21297
Dymar Electronics Limited,
Colonial Way,
Radlett Road, Watford,
Herts.
GOMMUNICATIONS

ANTARCTIC EXPEDITION

 require
Wireless Operator/Mechanics

With current morse epeed of 20 w.p.m. PMG Certificate, teleprinter experience eseential. Salary from $£ 1,003$ according to quallifications and experience with all living and messing freo.

For further detaile apply to:
BRITISH ANTARCTIC SURVEY
30 Gillingham Street, London, S.w. 1
406

PHONODISC LIMITED

Record Works, Walthamstow Avenue, E. 4

SERVICE ENGINEER

Experienced in one or more of the following fields: Modern Prolessional Tape Recording Equipment; Automatic Control Systems using Logic Circuits
Disc Cutting Equipment,
State-of-the-Art A.F. Amplifiers using the latest Solid State Techniques.
Weekly staff appointment, 37 -hour week. Good starting salary supported by generous holiday and sick pay schemes, and contributory pensior fund.
Please apply in writing to the Personnel Manager at the above address

RADIO OPERATORS

There will be number of vacancies in the Composite Signals Organisation for experienced Radlo Operators in 1970 and in subsequent years.

Specialist training courses lasting approximately nine months, according to the trainee's progress. are held at intervals. Applications are now invited for the course starting in September, 1970.
During training a salary will be paid on the following scale:

Free accommodation will be provided at the Training School.
After successful completion of the course. operators will be paid on the Grade 1 scale :

Age 21	¢965 per annum	
,. 22	£1025	
., 23	£1085	"
., 24	¢1145	"
25 (highest		
age polnt)	¢1215	"

then by six annual increases to a maximum of ¢1650 per annum.

Excellent conditions and good prospects of promotion. Opportunities for service abroad.

Applicants must normally be under 35 years of age at start of tralning course and must have at least two years' operating experience. Preference given to those who also have GCE or PMG qualifications.

Interviews will be arranged throughout 1970.
Application forms and further particulars from:
Recruitment Officer, (R.O.3) Government Communications Headquarters, Oakley, Priors Road, CHELTENHAM, Glos., GL52 5AJ
Telephone No. Cheltenham 21491. Ext. 2270

ENGINEERS
TECHNICAL AUTHORS
Areyou in the limelight?

Hewlell-Packard will put you there
To maintain our acknowledged position as one of the world's largest manufacturers of precision electronic equipment we require more Technical Authors. who will become active members of the R. \& D./Marketing team.
Our Authors are encouraged to expand and widen their experience and to use their various talents in communicating ideas, influencing product design preparing operating and service manuals.
We offer career growth in a rapidly expanding organisation.
Applicants with experience of writing, design, test or service engineering, preferably in test equipment or the communication industry should post the coupon to: quoting reference M. $\mathbf{I}^{2 / 1}$

John Young,

Personnel Department,
Hewlett-Packard Limited,
South Queensferry,
West Lothian.

Name

Address
Qualifications

TECHNICIAN or SENIOR TECHNICIAN REQUIRED
For work in the development of automated teaching equipment. Experience in electronics and/or television essential. Knowledge of optics, photography, cinematography desirable.
Salary scales (under review) £898-£1.252 p.a. or $£ 1,181-£ 1,486$ p.a. according to experience and qualifications.
Further information and application forms from the Laboratory Superintendent (T.EA1), Departments of Physics and Electronics, Chelsea College, Manresa Road, London, S.W. 3

CONSULTANCY REQURED

Messrs. Toşhniwal Bros. Private Ltd. of Bombay, wish to contact persons in England to provide consultancy services on their know-how with a view to manufacturing the following items in India:
Dry Mini Cells, Transducers for medical and other applications, A.C.-D.C. Servo Motors, Low Loss Ceramic Materials for use in high frequency switches, Delay Line for use in oscilloscopes, Low Frequency High Gain D.C. Amplifier, Choppers for use in D.C. amplifiers, Deflection Coil and Transformers for television.
Please write to SHRI B. D. Toshniwal, 198 Jamshedji Tata Road, Bombay 1, who will be able to meet the persons concerned in England during June this year.

465

TECHNICIANS AND Engineers for st. albans AND LUTON QUALIFIED OR NOT!

VACANCIES exist for work on testing and calibrating valve and solid-state electronic measuring equipments embracing all frequencies up to u.h.f. in Production, Service and Calibration departments.
APPLICATIONS are invited from people of all ages with experience or formal training in electronics and from ex-Armed Services technicians.
HIGHLY COMPETITIVE SALARIES, negotiable and backed by valuable fringe benefits.
RE-LOCATION EXPENSES available in many instances. CONDITIONS excellent; free life assurance, pension schemes, canteen, social club.
$37 \frac{1}{2}$-hour, 5 -day, office-hours week.
WRITE or phone Personnel Department stating age, details of previous employment, training, qualifications, approximate salary required, quoting WW3.

MARCONI INSTRUMENTS LIMITED, Longacres, St. Albans, Herts.
Tel: St. Albans 59292
Luton Airport, Luton, Beds.
Tel: Luton 31441.
A GEC-Marconi Electronics Company

Bith-maremilicetronics

CONTROL ENGINEERING opporivunifs il a avowics

Applications are invited from Development or Systems Engineers of degree or HNC standard who are experienced or interested in SERVOS, ELECTROHYDRAULICS, or FAILURE SURVIVAL SYSTEMS. These positions offer excellent prospects to Engineers to join our teams currently engaged on Development of advanced Military systems at Rochester. Vacancies also exist for Technical Authors, Technical Assistants and Design Draughtsmen.

ELIIOTT FILGHT AUTOMAIION

For further details please write or telephone for application form to: Mr E. Moss, Personnel Officer, ELLIOTT FLIGHT AUTOMATION, Airport Works, Rochester, Kent. Telephone Medway 44400, Extension 64.

A GEC-Marconi Electronics Company

ELECTRONCS TECHNCIANS

TECHNICIAN required for the Department of Electronic and Electrical Engineering, for the care and maintenance of Electrical Teaching Laboratories, with some construction work. REF: 179/B/335.

TECHNICIAN for the Department of Chemical Engineering for the Electronic Workshop to assist in maintenance and construction of electronic equipment. REF: $161 / \mathrm{B} / 336$. City and Guild/ONC or equivalent qualifications and evidence of good practical experience will be accepted in lieu of qualifications for older candidates. Salary range: $\mathbf{£ 7 3}$ to $\mathbf{£ 1 0 7 7 .}$

JUNIOR TECHNICIAN/

TECHNICIAN required for the Department of Psychology for the development and maintenance of equipment.
Salary range : $£ 399$ to $£ 615$ or $\mathbf{£ 7 7 3}$ to $£ 1077$, depending on age, experience and qualifications. REF: $121 / 8 / 334$. Apply to: Assistant Secretary (Personnel) Personnel Office University of Birming ham, P.O. Box No. 363, Birmingham, 15.

ELECTRONICS AND INSTRUMENTATION FOR MEDICAL RESEARCH
 ELECTRONICS TECHNICAL OFFICER

required to work on data processing equipment related to diagnostic apparatus using radio-active isotopes, 'also data transmission, and other interesting electronics work connected with medical research. Graduate electronics engineer with experience of digital circuits preferred. Salary $\mathbf{f 1 , 2 8 5 - £ 2 , 1 2 0}$ per annum.
Applications to the Secretary, ROYAL POSTGRADUATE MEDICAL SCHOOL, Hammersmith Hospital, London, W.12, quoting ref.: 8/104.

TENDERS

INDIA SUPPLY MISSION

The Director General, Posts and Telegraphs (TPL Section), Parliament Sereet, New Delhi-I, India, invites tenders for the following stores:
TENDER No. 162-2/70-TPL (CP)

> 12 MHZ Coaxial Line Communication Equipment including Power Plant, Test Instruments mainly consisting of 30 main repeaters and 500 dependent repeaters etc. approximately along with other ancillaries.

Intending Tenderers may obtain a copy of Invitation to Tender from the Assistant Chief Engineer (CP), P \& T Directorate, New Delhi-l, on payment of Rs. 20/- only. The payment should be made through any Schedule Bank in New Delhi in favour of the Accounts Officer (C \& A), office of the Director General, Posts and Telegraphs, New Delhi=1. The parPosts and Telegraphs, New Dethi-1. The par-
ticulars of payment should be indicated in the ticulars
tender.

Tenders are required to be returned direct to the Deputy Chief Engineer (CP), P \& T Directorate, Parliament Street, New Delhi-1, Directorate, Parliament Street, New Nethi-1.
so as to reach him by 29.5.1970 and NOT TO so as to reach
THIS OFFICE.

A specimen copy of the relevant Specification. Commercial Conditions etc. can be seen at Engineering Branch, India Supply Mission, at Engineering Branch, India Supply Mission,
Government Building, Bromyard Avenue, Government Building, Bromyard Avenue, Acton, London, W.3, und
S.3926/69/MDG/ENG.I.

CAREERS in SCIENCE and ENGINEERING

Exciting and rewarding opportunities in these fields are almost unlimited

Write now for details of the following courses offered by:-

, canes .

UNIVERSITY OF LONDON EXTERNAL DEGREES

B.Sc. General (Hons.) Mathematics. Physics. Chemistry. Botany. Zoology. Statistics.
B.Sc. (Eng.) (Hons.)-Electrical (including Electronics).
These courses are suitable for both men and women.
Study by the Sea in Britain's foremost international and cultural resort.
For prospectus apply to: The Principal. Room 67. College of Technology, Lansdowne. Bournemouth. BR1 3JJ. Tel. B. 20844.

A WAY OUT
 from TV SERVICING

We believe an Ex T.V. Engineer may be just the type who would fit into one of our Electro-Mechanical Development teams.
We do prototype work in connection with an extremely wide range of Industrial and Laboratory processes. An experienced technician with at least an O.N.C. or R.T.E.B. Certificate is required to assist with construction and testing.
This staff appointment offers excellent prospects with a progressive Company. There are the usual benefits, a contributory pension fund, free lunches, etc.
Applications should be made in writing to the Assistant Staff Manager, Johnson, Matthey \& Co. Limited, 78 Hatton Garden, London, E.C.1, quoting reference S. 77 .

Radio Operators Your chance of a shore job with good pay from the start!
If you hold a 1 st Class Certificate of
Competence in Radiotelegraphy issued by
the Postmaster General or the Minister of
Posts and Telecommunications, or an
equivalent certificate issued by a
Commonwealth administration or the Irish
Republic, the Post Office can offer you employment at a United Kingdom Coast Station, with a starting salary of $£ 965-£ 1,215$ (depending on age). Annual rises will take you to $£ 1,650$ and there are good prospects of promotion to more responsible and better paid posts.
If you are 21 or over, please write for more
details to:
The Inspector of Wireless Telegraphy, External Telecommunications Services, Wireless Telegraph Section (WW), Union House, St. Martins-le-Grand, LONDON E.C.1.

PROJECT ENGINEER

SOUND DIFFUSION, a rapidly expanding organisation, would like a word in your ear: about a job working on Hotel and Industrial paging, signalling and sound distribution systems. We envisage that the successful applicant will preferably have had between 3 and 5 years experience of working with

Fire Detection systems
Design and development of Audio and Public Address systems involving low level signalling and solid state techniques.
If this is your field and you're between 25 and 35 , with minimum \mathbf{C} and \mathbf{G}, but preferably of HNC standard, and looking for a job with security and good promotion prospects, you may be the man we are looking for.
The rewards are excellent-a good salary, pension and sickness schemes, subsidised canteen, sports and social facilities, and to go with these, assistance will be given towards removal expenses to the att ractive South Coast.
Sound Diffusion is expanding fast-we need YOU to expand with us-

> The Sound Diffusion Group

Personnel Manager Datum Works 80/86 Davigdor Road Hove BN3 1RZ Sussex Tel: Brighton 775499

EIECTRONIC TESTER

This opportunity offers good career prospects within an expanding Company.
Appligants should have a sound knowledge of electronics and electronic equipment and preferably some allied electro-mechanical knowledge. Experience of one of the following would also be considered advantageous:

- DC control systems and GPO equipment.

Solid state logic circuits and testing in conjunction with telegraph switching.
The work is interesting and varied. You could be involved with testing audio and radio equipment covering AF to UHF or telegraph switching allied to communication systems.
Excellent conditions of employment include membership of a pension and life assurance scheme and substantial concessions on holiday air fares.

Please apply to Personnel Dept.
INTERNATIONAL AERADIO LIMITED
aERadio house mayes road - southall middlesex

RANK STRAND ELECTRIC LTD

A Division of Rank Audio Visual which designs, manufactures and markets lighting and control equipment for the stage and studio, requires:

electronics
 commissioning engineers-digital equipment

To join a small team responsible for commissioning and fault finding, both ex-works and on site, of computer type lighting control systems. These systems are being installed in the United Kingdom and overseas and applicants must be prepared to spend $3-4$ weeks on location.

Applicants should be at least 24 with experience of working on radar or digital equipment employing semi-conductors either as commissioning engineer or in the services as an N.C.O., without direct supervision. A knowledge of and interest in theatre lighting would be advantageous. Salary from $£ 1,500$. Based Brentford, Middlesex.
Please write giving brief details to:

Personnel Manager,

Rank Strand Electric Ltd.
29 King Street, Covent Garden, W.C. 2.

SONY (U.K.) Limited require for their PROFESSIONAL DIVISION 1. VIDEO SERVICE ENGINEER

To repair range of protessional and semi-rofessional Recorders, Cameras, Monitors. Knowledge of electronic calculators an advantage. Salary region of $£ 1500$. Age $20-30$

2. SERVICE ENGINEER

We require a Sales Engineer to promote \& service our range of Desk Calculators. Applicants preferred having established connections with retait Office Equipment Companies and familiar with end user interests. Area will initially cover CENTRALLONDON and S. EASTERN COUNTIES. Applications in writing, giving details of qualifications and experience to:
M. C. Sykes Esq.

Sales-co-ordination Manager SONY (U.K.) Limited Ascot Road, Feltham, Middx.

HAMPSHIRE CHIEF TECHNICIAN farnborouch technical COLLEGE

For the DEPARTMENT OF SCIENCE to take charge of Physics, Electronics, Chemistry and Biology laboratories. He should have good qualifications and a particular interest in Physics and Electronics. He should be capable of servicing, maintaining and ordering instruments and apparatus.

The salary is according to Grade 4 (at present £1,130-£1,345 per annum) ; starting point depends on experience and qualifications.

Further particulars and application forms available from The Principal, Farnborough Technical College, Boundary Road, Farnborough, Hants.

TECHNICAL OFFICER in ELECTRONICS

required for the design and development of solid state circuitry involved in the development and use of a cyclotron for medical research. Applicants should have a Pass Degree or HNC, and experience in the use of integrated circuits, switching circuits, or data handling techniques. Age under 35 .
Salary in range $£ 1,499-£ 1,789+£ 90$ L.W. Apply to Director,
Medical Research Council Cyclotron Unit, Hammersmith Hospital, London, W.12.

MEAT RESEARCH INSTITUTE

ELECTRONICS TECHNICIAN to assist in development. construction and servicing of electronic equipment mainly connected with data logging. Experience in layout. wiring and testing of electronic circults and the location of faults in electronic equipment necessary.
QUALIFICATIONS O.N.C. in Electrical Engineering: City and Guilds certificate for Electrical Technicians, or equivalent.
SALARY $£ 1,080$ at age 22: $£ 1,360$ p.a. at age 28 ; rising to $£ 1.550$ p.a. 5-day week: good working conditions: optional contributory penslon scheme.
Application forms :
Secrelary, MEAT RESEARCH INS TITUTE
Langford, Bristol BS18 7DY
439

TV MECHANICS FOR NEW ZEALAND

RADIO and TV MECHANICS-are you dissatisfied with your present working conditions, high taxation and lack of progress? Why not shift to the sunny Soúth Pacific and join the friendly team at TISCO. New Zealand's largest Service Company! Being purely in Television Service, our mechanics are important people, not just numbers on a time sheet.
All 30 of our Branch Managers are mechanics. You can be with us in 3 months if you write now. Requirements : 5 vears' experience and £20 towards the family's fare, remainder of which will be paid.

Mr. B. I. Wells, Tech. Suparvisor, Tisco Let.,
Private Bag, Royal Oak, Auckland, NEW ZEALAND.

RADIO and TELEVISION TEST ENGINEERS

are required for our Television Distribution Equipment Division.
Applicants must be fully experienced and qualified technicians/engineers and will be expected to carry out interesting test work using sophisticated lest equipment.
Suitable engineers will be offered an aftractive salary and a staff position with all usual benefits.
Applications should reach the Personnel Manager by ist May.

Please write to: Mr. B. H. DOCWRA Personnel Manager Belling \& Lee Limited Great Cambridge Road Enfield, MIddx.

ELEGTRONICS TECHNICIAN/ SENIOR TECHNICIAN

Required to assist in the construction, testing and use of a computer-controlled flying-spot microscope for the automatic examination of biological material. The project is supported by the S.R.C. and the appointment will be for two vears in the first instance.
Salary scales (under review) £868-£1,252 p.a. or $£ 1,151-£ 1,486$ p.a. depending upon experience, qualifications and age. Day-release facilities.
Further information and application forms from the Laboratory Superintendent (ST.B), Departments of Physics and Electronics, Chelsea College of Science and Technology, Manresa Road, London, S.W.3.
Tel. 01-352 6421.

TRINITY HOUSE, LONDON

The General Lighthouse Authority for England and Wales requires a

MODEL SHOP MECHANIC

in the Evaluation Test and Development section of the Engineer-in-chief's Department at Tower Hill, E.C.3, to assist in the wiring and setting up of experimental electrical/electronic equipment.
Further detalls and application forms from The Secretary, Trinity House, Tower Hill, London, E.C.3.

11

Norwich City College

Department of Electrical Engineering

H.N.D. Course in
Electrical and Electronic Engineering

The Department of Electrical Engineering of the Norwich City College offers students who have studied Physics and Mathematics at Advanced level in the GCE and passed in one subject (or have obtained a good ONC or OND in Engineeringl a modern sandwich course for the Higher National Diploma in Electrical and Electronic Engineering. Subjects studied include Computation. Statistics. Economics and Law. Electronics. Control. Telecommunications. Power and Machines. Well balanced and interesting industrial training with pay will be arranged as required. The course is approved for major grant awards by Local Authorities.
Accommodation will be arranged by the College if desired.
Enquiries about the course starting in September 1970 should be made to:
E. Jones, B.Sc., Ph.D., C.Eng., M.I.E.E.,

Head of Department of Electrical Engineering,
Norwich City College.
Ipswich Road, Norwich, Norfolk, NOR 67 D.

ELEGTRONIC ENGNEERS

Service Engineers required for Offices, throughout the United Kingdom, of well-known Company manufacturing Electronic Desk Calculating Machines. Applicants should possess a sound knowledge of basic Electronics with experience in Electronics, Radar, Radio and T.V. or similar field. Position is permanent and pensionable. Comprehensive training on full pay will be given to successful applicants. Please send full details of experience to the Service Manager, Sumlock Comptometer Ltd., 102/108 Clerkenwell Road, London, E.C.1.

REDIFFUSION

COLOUR TELEVISION FAULTFINDERS \& TESTERS

We have a number of vacancies in our Production Test Departments for experienced faultfinders and testers.
Knowledge of transistor circuitry and experience with Colour Receivers together with R.T.E.B. Final Certificate or equivalent qualifications required.
These will be staff appointments with all the expected benefits.
Applications to:
Works Manager,
Rediffusion Vision Service Ltd.,
Fullers Way South,
Chessington, Surrey (near Ace of Spades).
Phone: 01-397541I

TECHMICAL IHSTRUCTORS

Urgently required for instructing our customers' maintenance personnel in the operation and maintenance of FLIGHT SIMULATORS. We have openings in both digital and colour closed circuit projected television fields. Must be able to work to a pre-prepared syllabus and able to prepare notes on courses.

Applications to:
Personnel Manager,
REDIFON AIR TRAINERS LIMITED, Bicester Road, Aylesbury, Bucks.

HERTFORDSHIRE COUNTY COUNCIL

EDUCATIONAL TELEVISION UNIT

Applications are invited for the following vacancies with the County Television Unit based at Goldings, Hertford:

1. A TECHNICIAN, to maintain language laboratories and some other audio equipment in the County. A suitable technical qualification (e.g. H.N.C.) is required, and practical experience of audio equipment. Ability to drive essential. Salary: $\mathbf{£ 1} 1,130-\mathbf{£} 1,345$.
2. A TECHNICAL ASSISTANT. A person with practical experience with audio visual equipment who could be trained as a camera operator and do preventative maintenance on video and audio equipment. Ability to drive essential. Salary: £835- $£ 1,130$.
For further details and application forms for these posts please write, within 7 days of date of publication, 10: The Director, County Television Unit, Wall Hall College, Aldenham, Watford, WD2 8AT, stating which post is to be considered.

NEWCASTLE UPON TYNE POLYTECHNIC Department of Physics and Physical Electronics

The following courses will be offered during the session 1970-71
B.Sc. (Monours and Ordinary) in Physical Electronics

A four year 'thick sandwich' course (i.e. three years full-time in College and one year in Industry) leading to the above qualification is open to both college-based and industry. based students. Industrial sponsorship may be obtained for suitably qualified students. Entry qualifications include two appropriate ' A ' levels, or an appropriate O.N.C. or O.N.D.
M.Sc. in Advanced Experimental Physics (Full-time or Part-time)

A twelve month full-time or three year part-time course commencing in October, 1970. Optlonal subjects of study include Semi-conductor Device Physics and Electrical Properties of Thin Films.
Further information may be obtained from the Head of Department of Physics and Physical Electronlcs, Newcastle upon Tyne Polytechnic, Ellison Building, Ellison Place, Newcastle upon Tyne, NEIBST.(RefAI70)

RADIO \& TELEVISION SERVICING RADAR THEORY \& MAINTENANCE

This private College provides efficient theoretical and practical training in the above subjects. One-year day courses are available for beginners and shortened courses for men who have had previous training.
Write for details to: The Secretary, London Electronics College, 20 Penywern Write for details to: Londecretary, London Electronics College, 20 Penywern
Rourt, London, S.W. Tel.: 01-373 8721.

COMPUTING DEVICES CO. LTD. require
 ELECTRONIC TECHNICIANS

to assist with construction and evaluation of prototype AVIONIC equipment at their LONDON HEADQUARTERS.
Experience in solid state electronics and ability to make accurate measurements is essential. Candidates should possess O.N.C. or equivalent. Day release for further study will be considered. Salary according to experience and qualifications.
Applications to The Personnel Manager, Computing Devices Company Limited, $5 / 25$ Scrutton Street, London, E.C. 2 .

ELEGTRONIGS TECHNICIAN

to assist with the electronics for automating biochemical analysis with an on-line computer and to help with the assessment of rew equipment for biochemical screening and other interesting work. Salary in range $£ 1,265-$ £1,635 per annum.

Applications to the Secretary

ROYAL POSTGRADUATE MEDICAL SCHOOL
Hammersmith Hospital, London, W. 12,
quoting ref: 4/260.

DELANE LEA MUSICLTD

have a vacancy for an Engineer in their servicing department to take part in the construction and installation of new recording studios. The successful applicant should have experience of professional audio equipment-circuit wiring and some mechanical ability would be an advantage.

Telephone 01-242 2743 or 01-437 4252
458

HERTFORDSHIRE COUNTY COUNCIL
Consortlum of Colleges of Education Applications are invited for the post of CCTV ENGINEER
for Mobile Unit based at Wall Hall College near Watford. Qualifications: A suitable degree in Electronic Engineering and knowledge of video and audio systems. Ability to drive and experience with ETV an advantage. 5alary: E1,570- £2,205 plus London weightins. 457

ENGINEERS

Have you considered a career in Technical Authorshipl If you have sound experience in electronics and ability to write clear concise English we can offer positions as Technical Authors. The salary range is 61500-2000 plus with excellent prospects and rewards. Box No. W.W.364, Wireless World.

University of Exeter
 INSTITUTE OF EDUCATION AND CALOUSTE GULBENKIAN FOUNDATION
 Regional Resources Centre Research Project SENIOR TECHNICIAN

Required to operate, maintain and devise audiovisual equlpment and teaching aids within the above project, which will commence in September 1970. Applicants should have suitable qualifications and/or experience in one or more of the following fields: experimental technical work, electrical work, graphics, photography. Current driving licence necessary. Appointment to commence July 1 st, 1970.

Salary $\mathbf{£ 1 , 0 1 8}$ to $£ 1,080$.
Further details from Mr. J. Walton, Institute of Education, Gandy Street, Exeter, EX4 30L, to whom completed applications should be sent by Thursday, April 30th.

483

[^21]SITUATIONS VACANT

ELECTRONIC TECHNICIAN required in Department Ef Physiology, to be responsible in conjunction with the Chlef Technician, for the service and calibration of a wide range of medical electronic equipment and to assist in the development of prototype research and teaching apparatus. Good electronic background essential; opportunities for specialised training available. in the range $£ 868$ per annum to $£ 1,252$ per annum. (These scales are at present under review.) Apply in writing to The Head Clerk (Ref. 189), King's College. London. Strand, W.C. 2 .
REDIFON LTD, require fully experdenced TELEELECTRONICS INSPECTORS TEST ENGINEERS and salaries. We would particularly welcome enquiries from ex-Service personnel or personnel about to leave the Services. Please write giving full details toThe Personnel Manager. Redifon Ltd.. Broomhll] Road
Wandsworth, S.W.18.
[26

SENIOR TECHNICIAN and TECHNICIAN required for Selectronics laboratory. Duties include wiring with some metal work, testing and repair of advanced elec tronic unlts. Salaries in the range of $£ 898$ to $£ 1,486$ depending on quallications and expertence (scales under review). Superannuation Scheme; four weeks' holiday canteen facilities. Apply in writing giving details of Aeronautics Department, Imperial College. Prince Con sort Road, London. S.W.7.
$\mathbf{W E}^{\text {E }}$ Lave Vacancies for Four Expertenced Test Applicants are preferred Production Test Department. Applicants are preferred who have Experience of Fault Equipment. Excellent Opportunities for promotion due to Expansion Programme. Please apply to Personnel Manager, Pye Telecommunications Ltd., Cambridge Works. Halg Road, Cambridge. Tel. Cambridge 51351 Extn. 327.

YOUNG ELECTRONIC TECHNICIAN required to fill 1 a post in a newly established research workshop. Duties will include maintenance of a wide range of apparatus used in biological research. also design and construction of units as required by the scientific staff. Salary depending on experience and qualifications in the range $£ 1,030-21,550$ p.a. Apply to the Secretary, Nr . Newbury, Berks., quoting reterence No. 116 and giving the names of two referees.

SITUATIONS WANTED

SENIOR DEVELOPMENT ENGINEER with 22 years D experience D.C., Audio, Analogue, products and test gear. Presently
position West of IIne Salisbury/Worcester. Alternatively position West of line Samidury/gn/cester, Alare Business same area. Box No. W.W. 496 Wireless World.

ARTICLESIFOR SALE

CAPACITOR DISCHARGE IGNITION

(W.W. Jan.) Invertor transformer 30VA 15:1 Ratio Cash with Order $32 /$ plus $5 /-\mathrm{p} .8 \mathrm{p}$.
Stabilised Power Supply Transformer (W.W. April) Cash with Order $35 /-$ plus $5 /$ p. \& p. MAGTOR LTD., 68 Dale Street, MANCHESTER 460

AMAZING VALUE

Plessey SL402A Preamp and 2W Amp 42/GE PA234 1W Audio Amplifier $\quad 17 / 6$ GE PA237 2W Audio Amplifier 32/6 RCA 40669 8A 400V Triac 24/F
RCA 40583 Trigger Diode 24/-
Notes supplied FREE with above. S 2N3055 Power Transistor 115W 14/6 New Full Specification Devices, by Return. P. \& P. 1/- per order. Cash with Order. Mail Order only.
Unbeatable rates for medium quantities.
JEF ELECTRONICS (W.W.5),
York House, 12 York Drive, Grappen-
hall, Warrington, Lancs.

HIGH FIDELITY LOUDSPEAKER SYSTEMS

ATLANTEA. Our latest design gives superb reproduction. The wide frequency range of $40 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{Kc} / \mathrm{s}$ and power rating of 10W will satisfy the most critical listener. Impedance 8Ω. Size approx. $23 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} \times 11 \frac{1^{\prime \prime}}{} \times 9^{n}$, finished in teak, oak or mahogany (please state which is required). I2 GNS. each. Matched pair for stereo 23i GNS. inc. p \& p.
S.P. LOUDSPEAKERS

69 Whitehill, DALKEITH, Scotland

TICKET MACHINE FITTERS

MECHANICAL CRAFTSMEN are required for interesting work in the Automatic fare Collection Section of the Chief Signal Engineer's Department. The work involves the maintenance, fault finding and repair of all automatic fare collection equipment on London's Underground System, Applicants would be required to work without close supervision at any Underground Station, on Ticket Machines, Left Luggage Lockers, Cash Registers and Automatic Gates. Some electrical knowledge would

be an advantage.
 - GOOD RATES OF PAY AND PROSPECTS OF PROMOTION
 - ADDITIONAL PAYMENT FOR OVERTIME
 - free travel on and off duty
 - PENSION AND SICK PAY SCHEME, ETC.
 Please apply in writing to:
 Superintendent of Recruitment,
 Griffith House,
 280 Old Marylebone Road,
 N.W.1. (Ref. T.M.F.)

SENIOR ESTIMATOR

Houchin Limited wish to appoint a Senior Estimator within their sales organisation. The Company manufactures electrical and pneumalic Ground Power units for starting and servicing aircraft, hydraulic freight elevators and electronic control equipment. We are looking for a qualified engineer aged over 25 years who has had relevant previous experience.
Salary by negotiation. Assistance with removal expenses.

Apply; Personnel Manager HOUCHIN LTD.
 Chart Road, Ashford, Kent

The International Publishing.Corporation seeks the following staff for their laboratories at Feltham \& Hemel Hempstead.

Technicians

Electronic technicians qualified to O.N.C. standard who have served a recognised apprenticeship or had similar experience.

The work involves construction testing of a wide variety of prototype analogue and digital systems.

Prototype Wiremen

Applicants should have served a recognised apprenticeship or had similar experience. The successful candidates will be required to construct and wire electronic prototype equipment from sketches and also have some experience in the construction of mechanical systems

A Design Draughtsman

A Draughtsman qualified to O.N.C. standard and experienced in the design of electro-mechanical systems.

The work consists of electro-mechanical drawings, electronic layouts, cable schedules and preparation of drawings for equipment manuals.

The Company pays progressive salaries and offers excellent working conditions

For Application forms
please write to the Director of Research \& Development,
IPC Services Ltd. Astronaut House, Hounslow Road, Feltham, Middx.

APPOINTMENTS

APMETERS. 6^{*} dial Flush. 15, 30 or 50 a AC or DC
Ex. Gov. high grade M.I. type. Brand new in sealed cartons $45 /-$ each, carr. paid. 1.000 available sealividually packed in heavy wood cases. Low price if you collect. Warer switches. Single pole 9 way selector. Ex. Gov. Is/-doz. \& 40 Der 1,000 loose. Transformers Sov 10a. Standard input. Ex. Gov. metal cases rusty 469 Raylelgh Road, Hution. Brentwood, Essex. Phone 685.
 A 2 N2926, 2 N 3708 . All at $1 / 9$ each or 16 for $f 1$. 17 Buckridge, Portpool Lane, London, E.C.]. [${ }^{\text {Money }}$

B $_{5}^{\text {RAND-NEW ELECTROLYTICS }} 15 / 16$ volt 0.5 , 1 esistors Carbon fim i watt 10 ohms to 1 Megohm 1.5 d . Wirewound 5 watt 15 ohms to 15,000 ohms 10 d . postage $1 /-$ per order. The C.R. Supply Co., 127 Ches-
terdeld Road, Sheffeld, S.8.
[454

B UILD IT in a DEWBOX quality plastics cabinet. B 2 in. $\times 2 i \operatorname{in}$. x any length. D.E.W. Ltd (W), Ringwood Rd. FERNDOWN, Dorset. B.A.E. for leaflet.
Write now-Right now.

CAPACITORS, $0.25 \mathrm{mid}, \quad 32.5 \mathrm{KV}$ DC Working, $£ 8$. otary inverters, $24 \mathrm{vDC} / 115 \mathrm{v}, 3$ phase, 400 Hz ., 1.8 amps., £7. Large high voltage pillar insulators, $16 /-$. Also electronically regulated battery chargers, static俍 House, St. Paul's Lane, Bournemouth. Teel. 23944【461

COSSOR OSCILLOSCOPE 1035 Mk.2. Excellent condition. £20. 45 Ludlow Avenue, Luton. 0582-29673.

How to Use Ex-Govt. Lenses and prisms. Hooklets. R Nos, ${ }^{1} \& 2$ 2 at $2 / 6$ en, List Free for S.A.E. H. W,
ENGLISH, 469 RAYLEIGH RD., HUTTON, BRENT-

MUSICAL MIRACLEE, Send S.A.E. for details of Cymbals and Drum Modules, versatile Independent bass pedal unit for organs, pianos or solo, musical nents list reed suitches etc. D.E.W. Lit., 254 Ringood Road, Ferndown, Dorset.

MUST Dispose, space urgently required: Mullard daptors, $£ 20$. EMI 1" Vidicon 2 cards to date and adaptors, £20. EMI $1^{\prime \prime}$ Vidicon tube, tested, £6.
 recelver, mains P.S.U., O/P stage, Workins, £ 1.10 .0 . £2. Or nearest offers. NVR, 36 Front Street West, Bedington, Northumberland.

NEW CATALOOUE No. 18, containing credit vouchers N value $10 /=$, now avallable. Manufacturers' new and post free. Arthur Sallis Radio Control Ltd., 28 Gardner
P.M.4 power supplies, 3 amp, \& 15 each. Some 4-15 units have never been uused and cost over $£ 30$ each,
Telephone, evenings only. PUT 3358

SHURE Magnetic Cartridges, manufacturer's pack. M brand new, post free, M3D $£ 4.19 .6$, M44/5/7 $£ 7.10$.
 G800 £ 717.6 Garrard Sp. 25 £ 10.17 .6 AP 75 G16.17 Teleton 203 E £ 19.10 . P. \& P. $7 / 6$. Mayware \& Co..
17 Heronsgate, Edgware, Middx.

UHF, COLOUR and TV SERVICE SPARES. Leading British makers' surplus Colour Frame and Line time base units incl. EHT transformer, 25 , carrlage uner, 4 translstors, knobs, circult data. Easlly adjusted for use as 6 position UHF tuner, $£ 4 / 10 /-, \mathbf{P / P}$ P/6. MURPHY $600 / 700$ series complete UHF conversion kit ncl. tuner, drive assy, 625 IF amplifier, 7 valves accessories, housed in special cabinet plinth assembly
$£ 8 / 10 /-$ or less tuner $£ 2 / 18 / 6, \mathrm{P} / \mathrm{P} 10 /$. SOBELL/GEC $05 / 625$ switchable IF amplifier and output chassis $32 / 6, P / P$ 4/6. UHF tuners incl. valves, slow motion
drive assy, knobs, aerial panel, £ $5 / 10 /-$, P/P $4 / 6$. UHF drive assy, knobs, aerial panel, $£ 5 / 10 /-, P / P 4 / 6$. UHF
list avallable on request. New or manufacturer tested list avallable on request. New or manufacturer iested Featherlight $36 /-$ AT7639 Peto Scott, Decca. Ekco, Ferranti, Cossor $50 /-$, Cyldon C $20 /-$, AB minlature FIth UHF injection incl. valves 78/6, Ekco 283/330, Ferrantl $1001 / 625 /-$ New fireball tuners, Ferguson,
HMV, Marconl type $37 / 6$, Plessey 4 position push button HMV, Marconl type $37 / 6$, Plessey 4 position push button tuners with UHF injection, Incl. valves, 58/6. Many
others avallable. P / P all tuners $4 / 6$. Large selection channel colls. Surplus Pye, Ultra, Murphy, 110° scan colls $30 /=$, Sobell 110^{-1} Frame O/P transformers $17 / 6$, P/P 4/6. 'Perdlo "Portorama", LOPT assy Incl. DYB6,
sultable for transistorised TV, $40 /-$ P/P $4 / 6$. LOPTs, sultable for translstorised TV, $40 /-, \mathbf{P / P} 4 / 6$. LOPTs,
Scan Colls, FOPTs avallable for most popular makes. Scan Colls, FOPTs avallable for most popular makes. OHF, battery operated $75 /$. UHF Masthead $\mathbf{~ E ~} 5 / 5 / 0$, 172 WEST END LANE, LONDON. N.W. 6 (NO. 28 Bus or W. Hampstead Tube Station), MAIL ORDER:
GOLDERS MANOR DRIVE, LONDON, N.W. 11.

WIRELESS WORLD COMPUTER components unused W.W. 450 , fireless World. S.A.E. for list to Box
10.000 approx. Polystyrene Camacitors by G.E.C. 350 boxed. \&100. Rapkin. ${ }^{2} 22$ Wellangborough Road Northampton.

BUSINESS OPPORTUNITIES

A GENTS wish to import battery driven articles direct Paul Floon. Kongensers 6, Or act as representatives. 1 , Norway.
[440

TEST EQUIPMENT - SURPLUS
 ANDSECONDHANO

MARCONI Sig-Gen TF801A, \&70; Distortion meter TF142E, £37.10.0; Solartron scope CD513, £40 P.U.SRS151, \&20; all working. 01-882 2261 Day. Hat-
field (45) 66910 Evening.

SiaNal generators, osclloscopes, output meters, wave voltmeters, frequency meters, multi-range meters etc., etc., In stock.-R. T. I. Electrontcs, Ltd., Ash

RECEIVERS ANB AMPLIFIERSH
 SURPLUS AND SECONDHAND

Her Rx5s, etc., AR88, CR100, BRT400, G209, S640, Retc., etc, in stock.-R. T. \& I. Electronics, Ltd.
Ashville Old Hall, Ashville Rd., London, E.11. Ley
4986.

NEW GRAM AND SOUND EQUIPMENT

CONSULT first our 76-page illustrated equipment Catalogue on H1-F1 (6/6). Advisory service, generous terms to members. Membership $7 / 6$ p.a.-Audio Supply Association, 18 Blenhelm Road, London, W.4.
$01-995$ 1661.

GLASGOW.-Recorders bought, sold, exchanged; versa.-Victor Morris, 343 Argyle St., Glasgow, C .2 .

TAPE RECORDINE ETC

TF quality, durability matter, consult Brltaln's oldest transfer service. Quality records from your sultable tapes. (Excellent tax-free fund ralsers for schools,
churches.) Modern studio facilities Grand.-Sound News, 18 Blenheim Road, London, W.4.
$01-995$
[28

TOP QUALITY pressings from your tapes, All sizes, 60 Benlecroft Drive, Newport. I.o.W. Solent Records

Your Tapes To DISC- 6.000 Lathe. From $25 /-$ High Bank, Hawk St., Carnforth, Lancs. Deroy Studlos,

YALVES

ValVE cartons by return at keen prices; send $1 /$ Godwin St.. Bradford, 1.

VALVES type CV1072, CV1838. CV2399, CV5, CV35, wireless world

FOR HITRE

FOR HIRE CGTV equipment, including cameras | monitors, video tape recorders and tape-any period. |
| :--- |
| Detalls from Zoom Television, Chesham 6777 |
| |
| 75 |

ARTICLESWANTED
 WANTED, all types of communicatlons recelver Electrondcs, Ltd. Ashville Old Hall, Ashville Rd., Lon Electronics, Led.: Ash don, E.11. Ley. 4986.
 Wanted. PYE Link TX 450L. Eddystone EAl2

W ANTED, televisions, tape recorders, radlograms High St., West Bromwich, Stafis. Tel: Wes. 0186 . ${ }^{[478}$

valves wanted

WE buy new valves, transistors and clean new com ponents, large or small guantitles. all detadls quotation by return.-Walton's Wireles, Stores, 55
Worcester St. Wolverhampton.

CAPACITY AVAILABLE

A IRTRONICS LTD., for Coll Winding-large or smal A production runs. Also PC Boards Assemblies. Suppliers to P.O.\% M.O.D.o etc. Export enquirles welcomed.
3a Walerand Road, London, S.E.13. Tel. $01-852$ 1706 [503

ELECTRICAL/ELECTRONIC circuit design. Specia purpose, experimental and prototype instrument

ELECTRONiC and Electrical Manufacture and EAssembly. Prototypes and short production runs. East Midlands Instrument Co. Led., Summergangs

METALwork, all types cabinets, chassis, racks, Hetc., to your own specification, capacity avallable for small milling and capstan work up to 112 bar.-
PHILPOTT'S METALWORES,
Ltd., Chapman St. Loughborough.

SMALL servicing and repalr contracts undertaken. Field service any distance. Best possible rates for Frlmley, Surrey. Cambrian Electronics, 96 High St.;

Wanted. Electronic assembly work, printed board assembly
No. W. W .473 , Weclality. Moderate
Wharges.
[473

TECHNICAL TAAINING

BECOME "Technically Qualifed" in your spare time g guaranteed diploma and exam, home-study courses City \& \& Guilds, etc., highy informative R.T.E.B., Guide-free.-Chambers College (Dept. 837K), College
House, 29-31 Wrights Lane, Kenstagton, London, W. 16

CITY \& GUILDS (Electrical, etc.), on "Satisfaction Cor Refund of Fee" terms. Thousands of passes. For detalls of modern courses la all branches of elecrical ensheering, electronics, radio, T.V., automatlon, etc.; send for 132 -page handbook-free.-B.I.E.T.
(Dept.
152 K), Aldermaston Court, Aldermaston, Berks.
$\mathbf{R}^{\text {ADIO officers see the world. Sea-going and shore }}$ Grants apointments. Trainee vacancles during 1970 for prospectus. Wireless College, Colwyn Bay.

TECHNICAL TRAINING IN Radio, TV and Electronics 1 through world-famous ICS. For detalls of proven home-study courses write: ICS, Dept. 443, Intertext

TV and radto A.M.I.E.R.E., City \& Gullds. R.T.E.B.; certs., etc., on satisfaction or refund of fee terms; thousands of passes; for full detalls of exams and home training courses (including practical equipmeat) in all page handbook-free; please state subject.-British Institute of Engineering Technology (Dept. 150K),
Aldermaston Court, Aldermaston, Berks.
[I8

TUITION

ENGINEERS.-A Techalcal Certifcate or qualifcaCton whll bring you security and much better pay. Elem. and adv. private postal courses for C.Eng., A.M.I.E.R.E... A.M.S.E. (Mech. \& Elec.), City \& giploma courses in a.I branches of EngineeringDiploma courses in all branches of EngineeringDraughts. Bullding, etc.-For full detalls write for FREE 132-page gulde: Britlsh Institute of EngineerIng Technology (Dept. 151K). Aldermaston Court,
Aldermaston, Berks.
[14

K INGSTON-UPON-HULL Education Committee. A College of Technology. Principal: E. Jones, M.Sc.. FULL-TIME courses for P.M.G. certifcates and the Radar Maintenance certificato. Information from College of Technology, Queen's Gardens, KIngston-upon-
[18

MERCHANT NAVY: Residential Radio Officer morland. Traing.-R.M.S. Wray Castle, Ambleside, West-
[311

CONSULTANTS

CONSULTANT on VHF aerial design required to C carry out free-lance assignments for speciallst firm of radio telephone engineers. Must have extensive
specialised expertence in the VHF radio telephone feld on all types of unity and gain aerials; also experience of communal aertal sites essential. Sinclair

BOOKS, INSTAUCTIONS, ETC.

MANUALS, circuits of all Brttish ex-W.D. 1939-45 R.E.M.E. instructions; and instruments from ortginal R.E.M.E. instructions; s.a.e. for Ilst, over 70 types.-
W. H. Balley, 167a Moftat Road, Thoraton Heath.

R ADIO JOURNALS avallable,
60 Salhouse Road, Rackheath, Norwich.

Generation of High Magnetic Fields

D. H. Parkinson, M.A., D.Phil., F.Inst.P., and B. E. Mulhall, M.A., Ph.D.

A comprehensive study of the subject covering the whole range of the techniques which may be employed and also the whole range of possible fields up to the extreme limits.
160 pp. 8 I illustrations. 80 s. net. 82 s . by post.

Transistor Bias Tables

Vol. II: Silicon. E. Wolfendale, B.Sc.(Eng.), F.I.E.E.

This collection of accurately computed tables has been compiled to assist anyone wishing to design or build a transistor amplifier. The tables are on similar lines to the author's previous transistor bias tables for germanium transistors but a more sophisticated computer programme has been written which enables a greater degree of optimisation to be built into the compilation of the tables. This should enable the tables to be used directly to provide the values of the three resistors required for the conventional bias circuit for silicon transistor.
82 pp. 25 s . net. 27 s . by post.

Electronics and Instrumentation

Robert L. Ramey
Provides a sound groundwork for understanding the basis of existing instruments and their applications; also of instruments which are likely to be invented in the future. A useful introduction for students of electronics, and a single course for students in other branches of science and engineering.
55 s . net. By post 58 s . 321 pp .128 illustrations.
obtainable from your bookseller or:
THE BUTTERWORTH GROUP
Butterworths-Iliffes-Newnes
88 KINGSWAY LONDON WC2 01-405 6900

is the simple, basic, inescapable truth that there are only 24 hours in a day.
Barely enough time to keep abreast of technological developments in your own sphere, let alone come
to terms with what's happening in other disciplines.
How can you maintain a working awareness of progress in practical science at large, without
devoting all your waking hours to it ?
It isn't hard. Just read Science Journal regularly
With over, half its readership in industrial administration, Science Journal puts special emphasis on keeping management fully briefed on major developments in every relevant sphere.
You'll see timely, well-written articles on every front where modern technology is changing man's life. Andof more immediate importance-you'll find in every issue the 'Science and Management' series, packed with provocative ideas for running your business creatively.
Science Journal keeps the technical side of your business life up-to-date and well informed.
That, too, is a scientific fact

SCIENCE JOURNAL
 THE INTERNATIONAL MONTHLY FOR TECHNICAL MANAGEMENT 6/-

Place an order with your newsagent.

New from ILIFFE

WORKED EXAMPLES IN ELECTRONICS AND TELECOMMUNICATIONS

—Problems in Telecommunications Vol. 3
B. HOLDSWORTH, B.Sc., C.Eng., M.I.E.E., M.Sc. and Z. E. JAWORSKI, Dip.Eng., D.I.C., C.Eng., M.I.E.E., M.I.E.R.E.

This, the third of four volumes, has been written to meet the needs of students preparing for the B.Sc. Final examination in Telecommunications, for Part III of the I.E.E. Line and Radio Course, and for the C.E.I. Part II examination in Communications Engineering. Each chapter deals with one main topic and contains a selection of representative examples which enable the reader to acquire a thorough grasp of the principles involved.

278 pp. 162 illustrations
25s. net, 27s. by post

PRINCIPLES OF PAL COLOUR TELEVISION

H. V. SIMS, C.Eng., M.I.E.E., F.I.E.R.E.

This book discusses the principles concerning the transmission of colour as well as reception and particularly the effects due to non-linearity and its correction. Other aspects covered are the failure of constant luminance, differential phase distortion and the production of Hanover bars. The book covers City and Guilds 300 Series (Television Broadcasting). 154 pp. 59 illustrations

35s. net case, 37s. by post
21 s . net student edition, 23s. by post.
Further information available on request
obtainable from your bookseller or:

THE BUTTERWORTH GROUP

Butterworths-Iliffes-Newnes
88 KINGSWAY LONDON WC2 01-405 6900

A NEW HI FI $\begin{gathered}\text { pulse } \\ \text { rate } \\ \text { F.M. TUNER M:70 }\end{gathered}$

- I4 SI TRANSISTORS. 4 SI - NO COILSI NO ALIGN.
- TIONING METER
- DISTORTION-LESS THAN - AUDIO O/P-300mV
- SUITABLE FOR STEREO
- SIGNAL/NOISE COdb

N8-108Mc/3
$88-108 \mathrm{Mc} / \mathrm{s}$ - POWER REQUIREMENTS
$11{ }^{\circ}$ by 5^{*} printed circult board for above tuner with fitted tuning gang, toxether hopping list and asaembly detaits for all componenta required:
$75 /$ - (approx. cost of remaining components - (6)

- A HIGH FIDELITY TUNER FOR ABOUT CIO!

Printed circuit accommodates all components, you just insert each one-If you can read and use a soldering iron- 45 mins.
The shopping list consists of two prepared orders which are sufficient for you impress you as well as your friends. p. \& p. 5/-
mail Orders to: DEPT. WW, MULTEL
3O BAKERSTREET . LONDON. W.I
WW-119 FOR FURTHER DETAILS

ENCAPSULATION -

low tool cost method for cylindrical coils and potting. Enquiries also for-

REED RELAYS SOLENOIDS COIL WINDING TRANSFORMERS to 8 K.V.A.

Relay module 12-way "MS" range
 Knapps Lane, Bristol 5. 0272657228

THE SEMICONDUCTOR DATA BOOK

by Motorola
60/- 4th Edition Postage 5/TRANSISTOR AUDIO AND RADIO CIRCUITS by Mullard. 30/. Postage I/-.
SCR MANUAL by General Electric Company. 25/-. Postage 2/-.
LEARN ELECTRONICS THROUGH TROUBLESHOOTING by Wayne Lemons. 75/-. Postage 2/6.
SEMICONDUCTOR POWER CIRCUITS HANDBOOK by Motorola. 20/-. Postage 1/-.
CHOOSING AND USING SHIP'S RADAR by Captain F. J. Wylie. 45/-. Postage $1 / 6$.
TRANSISTOR SWITCHING AND SEQUENTIAL CIRCUITS by John J. Sparkes. 25/-. Postage 1/-.

COMPUTER ORGANIZATION by Ivan Flores. I30/-. Postage Free.
SOURCEBOOK OF ELECTRONIC CIRCUITS by John Markus. 190/-. Postage Free.
POWER ENGINEERING USING THYRISTORS VOL. I by Mullard. 30/-. Postage $1 /$-.

THE MODERN BOOK CO.

BRITAIN'S LARGEST STOCKIST
of British and American Technical Books
19-2 PRAED STREET,
LONDON, W. 2
Phone PADdington 4185
Closed Sat. I D.m.

from Poland

electronic components

 receiving valves for radio and TV receivers picture tubes guns for TV gettersHIGHLY STABLE PARAMETERS LONG OPERATIONAL LIFE
 are offered by Foreign Trade Enterprise
 Warszawa, A1.Jerozolimskie 44, Poland P.O. Box Warszawa 1 No 370 Telex No 81437

CATALOGUE, PRICES, AND FULL DETAILS AVAILABLE UPON REQUEST

WW- 121 FOR FURTHER DETAILS

VACUUM

OVENS, PUMPS. PLANT, GAUGES. FURNACES, ETC., GENERAL SCIENTIFIC EQUIPMENT EX-STOCK, RECORDERS, PYROMETERS, OVENS, R. f. heaters. free catalogue.
V. N. BARRETT \& CO. LTD. 1 MAYO ROAD, CROYDON, CRO 2QP. 01-684 9917-8-9

DEMMOS

TAPE RECORDERS FOR RESEARCH, INDUSTRY AND PROFESSIONAL AUDIO sinzle ond muttichonnel 8CORWELLLANE, HILLIIGDON, MDX. 01.5733561

WANTED-

Redundant or Surplus stocks of Transformer materials (Laminations, C. cores, Copper wire, etc.), P.V.C. Wires and Cables, Bakelite sheet, etc, etc.

Good prices paid
J. BLACK

44 Green Lane, Hendon, N.W. 4 Tel. $01-203$ i85s and $\mathbf{3 0 3 3}$

NEW LOW COST

LENS

High-quality Dallmeyer F4.5 2.4" $(61 \mathrm{~mm})$ lens provides a reproduction of trace and graticule with good linearity. The object/image ratio is $1: 0.7$ (nom).

SHUTTER SPEEDS

Three modes of operation are provided, including fixed exposure $1 / 25 \mathrm{sec}$ (nom.) time and brief

ADAPTERS

Comprehensive range of adapters are available to fit most popular oscilloscopes.

4 Wadsworth Road, Greenford, Middlesex. Telephone: 01-998 1011
THE DAVALL PHOTO OPTICAL COMPANY OF THE BENTIMA GROUP

SALES
P.O. BOX 5 WARE, HERTS TEL. WARE 3442

| SEMICONDUCTORS | TOP HAT SILICON |
| :--- | :--- | :--- |
| FOR W. W. CAP, DIS | RECTIFERS. AII god. No |
| IGNITION SYSTEM | Shortoropencircuidevices. |

2N305
$2 N 3702$
$2 N 3704$.
$2 N 3704$
in 1001
iN4001
IN4005
New and rully guaranteed. PLASTIC PNP SILICON PLASTIC PNP SILICON

S.c.ens ${ }^{16}$ (undated) AMP
(unplated) $\begin{array}{llll}100 \text { PIV } & 1-2 / 6 & 25-99 & 100 \\ 100\end{array}$
 All zested perfect f
devices
guaranteed

1/6

TESTED TRANSISTORS |/6 Oneprice only PNP. NPN Silicon
Planar or Gorm. Fully Tested and
similar each. each.

${ }^{\text {ACl }} 125$	ACY36	NKT713	2 G 31	6
	BC108		${ }_{263994}$	
AC128	BFYSO	$\bigcirc \mathrm{OC45}$	2N696	1
${ }^{\text {A Cl }}$ A 319	BFYS BFX84	\bigcirc	${ }^{2} \mathbf{2 N 6 9 7}$	${ }_{\text {2N2906 }}$
ACY20	BFX86	$\bigcirc \mathrm{OC7}$	2 N 708	2 N 2696
${ }_{\text {ACr }}$		OC82	${ }^{2} \mathrm{~N} 929$	
${ }^{\text {ACr }}{ }^{2}$	NKT142	TIS44	2 N 1131	2 N 3703
${ }_{\text {A A M }}$	NKT212	${ }_{26302}$	${ }_{2}^{2 N 1632}$	2S102
ACr30	NKT214	$2 \mathrm{G303}$	2 N 1711	25104
ACY31	NKT215	2G639	2 N 2904	
${ }_{\text {ACY }}$ A ${ }^{\text {cres }}$	NKT677	26374	${ }_{2}{ }^{2} 2924$	2573

TRANSISTOR EQVT. BOOK

 2, 500 cross references of transistors-British, European, American and Japanese. A must for every transistor user:Exclusively distributed by DIOTRAN SALES.
IS/- EACH.
 Bonded typer plus some Zeners. 500.000 available at
Lowest or Leo Price.
Loon pieces $63,0.5,00$ pieces $613,10,0,10,000$ pieces 623 .

BRAND NEW FULLY TESTED EPOXY CASE UNNJUNCTION TRANSISTORS. TYpe TIS43 and BEN 3000 and replacement for 2 N2645. Full data available.
LOWEST PRICE AVAILABLE ANYWHERE, 100 of 4 4-

HIGH QUALITY SILICON PLANAR DIODES. SUBMINIATURE DOO 7 G GIass TYpe, suitable replacements for OA200. OA202, BAY 38, IS1 30.15940 . 200,000 to clear
at 44 per 1,000 Dieces. GUARANTEED BO\% GOOD.

GULLY TESTED DEVICES AND QUALITY OA202 sillicon Diode. Fully Coded.
150 PIV 250 ma Qty. Price 630 per 1,000 pieces.

BYI00 SIL. RECT'S 800 PIV 550 mA .
1-49 2/6 each; $50-992 / 3$ each, 100 .-999 2/. each; 1,000 up
$1 / 10$ each. Fully Coded. Firsse Quality.
Post and Packing costs are continually rising. Please add
I/. rowards same. CASH WITH OREM, PLEASE. GIRO No. 30-102

OVERSEAS DUOTATIONS BY RETURN. SHIP.
MENTS TO ANYWHERE IN THE WORLD.

HOOD 10W-TEXAS 15W-BAILEY 30W
Guaranteed new Motorola, RCA, SGS, Texas Tr's $\begin{array}{llllll}\mathrm{BCl} 107 & 3 / 6 & \mathrm{M} 1481 & 26 / 6 & 2 \mathrm{~N} 697 & 3 / 11\end{array}$ $\begin{array}{llllll}\mathrm{BCl} 109 & 2 / 8 & \text { M1491 } & 29 /- & 2 \mathrm{~N} 1613 & 5 / 3 \\ \mathrm{BCl} 25 & 10 / 6 & \text { MJE521 } & 15 /- & 2 \mathrm{~N} 3906 & 6 / 6\end{array}$ $\begin{array}{llllll}\mathrm{BCl}^{\mathrm{BCl} 26} & 10 / 6 & \text { MPF103 } & 7 / 6 & 2 N 4058 & 5 /- \\ \text { BCIB2L } & 2 / 11 & \text { TIP31A } & 19 / . & 2 \mathrm{~N} 4302 & 9 /-\end{array}$ $\begin{array}{llllll}\text { BC182L } & 2 / 1 & \text { TIP } 1 \text { P1A } & 19 / 0 & 2 N 4302 & 9 /- \\ \text { BC212L } & 3 / 8 & \text { TIP32A } & 22 /- & 40361 & 11 / 3\end{array}$ Matched pairs 1/- extra per pair. Postage 1/- on orders below (1.0.0. Matched 10 Tr's (Bailey 30 W) with Pcb Matched 10 Tr's (Texas 15 W) \& IS2082A Matched 4 Tr's (Hood 10 W) with MJ480s
Matched 4 Tr's (Hood 10 W) with MJ481s
66.5.0

Send S.A.E. for List of Components guaranteed despatch by first class return A.IFACTORS. 72 BLAKE ROAD, STAPLEFORD.NOTTS.

WANTED
ELECTRICAL AND ELECTRONIC SURPLUS EQUIPMENT BEST PRICES PAID FIELD ELECTRIC LTD
3 SHENLEY ROAD, BOREHAMWOOD Telephone ELSTREE 6009

AMATRONIX LTD (WW)
TRANSISTORS-MINT, NO SECONDS, NO RE-MARKS. GUARANTEED TO SPEC. AD161/162 12/- BFY51 $\quad 4 / 6 \quad$ 2N3704 $\quad 3 / 6$ $\begin{array}{llllll}\text { AF239 } & 10 /-\quad 1844 & 1 / 4 & 2 N 3707 & 3 / 6\end{array}$ $\begin{array}{llllll}\text { B-50000 } & 11 / 3 & \text { IS557 } & 3 /- & 2 N 3794 & 3 /-\end{array}$ $\begin{array}{llllll}\text { BD121 18/- MC140 } & \text { 4/- } 2 N 3983 ~ 6 / 6\end{array}$ $\begin{array}{llllll}\text { BC107B } & 3 /- & \text { SF115 } & 3 /- & 2 N 4058 & \text { 4/- }\end{array}$ $\begin{array}{llllll}\text { BC168B } & 2 / 3 & \text { T1407 } & 6 / 6 & 2 N 4285 & 3 /- \\ \text { Tli860M } & 4 / 8 & \text { 2N4289 } & 3 /-\end{array}$ $\begin{array}{llllll}\text { BC169 } & 2 / 6 & \text { T1861M 4/11 } & \text { 2N4291 } & 3 /- \\ \text { BF167 } & 5 / 3 & 2 N 706 & 2 / 7 & \text { 2N4292 } & 3 /-\end{array}$ $\begin{array}{llllll}B F 178 & 9 /- & 2 N 2926 G \quad 2 / 6 & 28 B 187 & 2 /-\end{array}$ $\begin{array}{llllll}\text { BF225 5/- } & \text { 2N3702 } & 3 /-\quad 40468 \text { A } & 7 / 6\end{array}$

CERAVIC I.F. RESONATORS. Tailormake 455 kHz lif. selectivity to your own
requirements. New Brush Clevite Identical requirements. New Brush Clevite Identical
Resonntors need only the addition of fixed capacitore of standard values to create superb flters with a wide range of bandwid th options. Makers' data gives capacitor values for filters with $2-8$ resonators. Example: 4-resonator filter, -ddB @ 1.9kHz on tune;-604B @ each, 4 for $30 /-$. With brief data and hints.

INTEGRATED CIRCUITS-PA234, new dual-in-line 1 W audio amp, with data, 24/-; CA3020, TO-5 push-pull amp., usable to $6 \mathrm{MHz}, 28 /-$; TAB101, transiator quad for ring modulator, $21 /$
AMPLIFIER PACKAQES-Component kits for efficient transformerless class \mathbf{B} power amps. Low standby current, simple circuitry, no adjustments. AX2 $9,300 \mathrm{~m}$ W in $10-20$ ohms, other loads usable, input, 22/6; AX4 24 V , 5 W in 8 ohms, 4 W in 15 ohms, input 100 mV in 40 K . Operable 18 V with 12 mA standby current and $2-3 \mathrm{~W}$ output, Uses AD161/2 output pair with siflcon low-level stages. Still only $30 /$.. A $\times 5,12 \mathrm{~V}, 3 \mathrm{~W}$ in 3 ohms, $35 /-$.
MINI MAINS TRANBFORMERS $-30 \times 30 \times 37$ mm . MT9, $9-0-9 \mathrm{~V}$ 80mA, $12 / 6$. MT7, $7-0-7 \mathrm{~V}$, Mail order only. Cash with order. Llst $6 d$., free with orders. U.K. post free on orders over 10/396 Selsdon Road, South Croydon, Surrey, CR2 ODE

WW- $12+$ FOR FLKTHER DETAILS

Thanks to a bulk purchase we can offer brahd NEW P.V.C. POLYESTER AND MYLAR RECORDING TAPES Manufactured by the world-famous repuzable British tape firm, our tapes are boxed in polythene good as any other on the market, In no way are the rapes faulty and are not to be confused with imporsed, used or sub-standard tapes. 24-hour despateh service.
Should goods not meet with full epproval, purchase
price and postage will be refunded. price and postage will be refunded.
 L.P, $\left\{\begin{array}{lllll}3 \mathrm{in} . & 225 \mathrm{ft}, & 2 / 6 & 5 \mathrm{in} . & 500 \mathrm{ft} . \\ 54 \mathrm{in} . & 1,200 \mathrm{ft} . & 10 / 6 & 7 \mathrm{in} . & 1,800 \mathrm{ft} . \\ \hline 13 /-\end{array}\right.$
 in. $1,800 \mathrm{ft}$. $16 / \mathrm{F}$ 7in. 2,400
Poseage on all orders $1 / 6$
COMPACT TAPE CASETTES AT HALF PRICE
60, 90 , and 120 minutes playing cime, in original plastic dibrary boxes.
MC 60 ק/-each. MC 90

STARMAN TAPES

28 LINKSCROFT AVENUE. ASHFORD. MIDOX.

CAPACITOR DISCHARGE IGNITION SYSTEM

Using the article as published in the January 1970 issue of Wireless World, a universal primed-circuit board has been designed suitable for both positive and negative earthignition systems. This also enables simple conversion to opposite polarity if the vehicle is subsequently changed. The printed-circuit board incorporstes Cinch printed-circuit mounted screw terminal blocks for the input and output connections. together with a printed-circuit mounted fuse carrier with fuse.
A complete complement of components and semiconductors are supplled together with a ready drilled and fluxed primted circuit board, drilled heatsink, hardware and suitable transiormer.
Although wiring details are supplied for both positive and negative earth versions. customers must state which version they require so that the correct semiconductors can be supplied.

Price E9-5-0 plus 10/- carriage.
Trade Enquiries Invited.
Mail Order Only.
DABAR ELEC'TRONIC PRODUCTS
98a, Lichfield Street, Walsall, Staffs.
there are gems in ireland
This is one

THIS is another

IF YOU WANT A REAL GEM CONTACT

WW-127 FOR FURTHER DETAILS

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies.
MULTICORE CABLE IN STOCK CONNECTING WIRES
Large selection of stranded single p.v.c. covered Wire 7/0048, 7/0076, 14/0076 etc. P.T.F.E. covered Wire, and Silicon rubber covered wire, etc.

J. Black

OFFICE: 44 GREEN LANE, HENDON, N.W. 4 Tel: 01-203 1855. 01-203 3033 STORES: 3D BARRETTS GROVE, N. 16 Tel: 01-254 1991

LAWSON HRAND NEW TELEVISION

12° Types $\mathbf{6 4 . 1 0 . 0}$ 14* Types 44.19 .0 17° Types E 5.19 .0 19° Types E .19 .0 21° Types $\mathbf{6 7 . 1 5 . 0}$ 23° Types 69.10 .0 19* Panorama \&8.10.0 23° Panorama E 11.10 .0 190 Twin Panel E9.17.6 23° Twin Panel $1 \mathbf{1} 2,10.0$

Carriage and insurance 12"-19"-1216 $21^{\prime \prime}-23^{\prime \prime}-1510$

The continually increasing demand for tubes of the very highest performance and reliability is now being met by the neto Latoson "Century 99" range of C.R.T.s "Century 99 " are absolutely brand neto tubes throughout manufactured by Britain's largest C.R.T. manufacturers. They are guaranteed to give absolutely superb performance with needle sharp. definition. Screens of the very latest type giving maximum Contrast and Light output; rogether toith high reliability and very long life.
"Century 99 " are a complete range of tubes in all sizes for all British sets manufactured 1947-1969. Complete fitting instructions are supplied with every tube.

2 YEARS FULL REPLACEMENT GUARANTEE

LAWSON TUBES

18 CHURCHDOWN ROAD MALYERN, WORCS. Tel. MAL 2100
geiger counters latest government release, OF THESE EXCEEOINGLY POPULAR ANO WELL KNOWN CONTAMINATION METERS. Which were intended for use. should the need arise, by the Civil Defence etc.

These are new of virtually as new, being ghet ssoreti oith, and are camplete mith all parts instuding. Carrying Haversack. Cable and Proba. Instrutuons lor use This Model incorpoorates a Piup in Vibrator Power Unt, instrad of the normal Bertem Holdet, thereby using tout standard Mallory R.M. 12 R. Long Lift Barleness (nol supphenl. The unit in completehy porfabie being made in Cast Aluminum. matung in extrumetr light and strong fvory Pant is completelly seated and Water caaton complete ano testeo go post id. Two carriage paid. H. TOWMENO. 21 THE ROUNOWAY, MORLEY, NA. LEEOS. YORKS

IMMEDIATE CAPACITY

All types of small part assembly: WIRE TERMINATIONS • SOLDERING PRINTED CIRCUIT • SUB ASSEMBLIES PLASTIC TRIMMING AND FINISHING FLYPRESŚ • DRILLING • TAPPING.
Quick turnround - London deliveries most days.

DOWNSIDE EQUIPMENT CO.
4 MARKET HILL . MALDON • ESSEX Telephone : Maldon (Essex) - (0621) 3980

BUILD YOURSELFA TRANSISTOR RADIO

RADIO EXCHANGE CO. LTD.
Dept WW. 61 High Street, Bedford. Phone 023452367

MACLEANS 6° FAN
230 v AC . 3 Amp. $2,800 \mathrm{rpm}$
55/- pp 6/-.
IMLOCK COLLAPSIBLE ALUMINIUM CHASSIS FRAMES
Size $10 \frac{1}{2}^{\circ} \times 83^{\circ} \times 6 \frac{1}{2}^{\prime \prime}$
20/- pp 3/-
AIR CONTROL INST. BLOWER MOTORS
Single phase 200-250v AC $2,800 \mathrm{rpm}$.
Outier size $2 \frac{1}{2} \times 1 \frac{1}{2}$
£3 15 s . Od. pp 7/6
20-WAY 3-POLE P.O. TYPE JACK STRIPS $10 \frac{1}{2}^{\prime \prime} \times 3 \frac{1}{2}$ ". $19 / 6 \mathrm{pp} 3 / 6$. Ex-8quip.
CLAUDE LYONS VOLTAGE STABILIZER Type TS-2-5440 Input 198-258v 47-65 Output $240 \pm 0.25 \%$ v 12 Amp .2 .88 KVA Ex-equipment. Brand new condition.
$£ 35 \mathrm{Os}$. Od. plus $£ 2$ carriage.
ANALEX POWER SUPPLIES
Size 7" $\times 19^{\prime \prime} \times 13^{\prime \prime}$. 230v AC Input.
Output $6 \mathrm{v} 5 \mathrm{Amp} \times 2 ; 18 \mathrm{v} 7.5 \mathrm{Amp}$. DC
Fully Transistorised
Marginal adjustment on output
$\mathbf{£} 35 \mathrm{Os}$. Od plus $£ 3$ carriage.
ANALEX POWER SUPPLY
Size $13^{\circ} \times 19^{\prime \prime} \times 5 \frac{1}{4}^{\prime \prime} .230 \mathrm{vAC}$ Input 36 v 14A Output. Stabilized.
$36 v 14 A$ Output. Stabilized.
Ex. Equip. Fully Tested. New condition
Ex. Equip. Fully ested. New cond
$\mathbf{£ 2 7} \mathbf{0 s}$. Od. plus $£ \mathbf{1 0} \mathbf{1 0}$ s. carriage.
VEEDER-ROOT MECHANICAL COUNTERS
5 digit; lever operated; resetable.
$3^{\prime \prime} \times 1 \frac{1 x^{\prime \prime}}{} \times 1 \frac{13^{\prime}}{}$. Ex-equip.
10/6 plus $2 / 6 \mathrm{pp}$.
DORMAN LOADMASTER
$250 / 440 \mathrm{v}$ AC. 5 amp triple pole circuit breaker. 29/6 plus 5/-pp.
Brand new with fixing bracket.
TRANSFORMERS
Input 230 v
Output: $6.3 \mathrm{v} \cdot 8 \mathrm{Amp} \times 2 ; 6.3 \mathrm{v} 4 \mathrm{Amp} \times 3$

New condition tested.
$\mathbf{£ 2 5 s . 0 d} . \mathrm{pp} .12 / 6 \mathrm{~d}$.
Input 230v. Output: 6.6v 122Amp Size $6 \frac{1}{2}^{\prime \prime} \times 7 \frac{1}{2}^{\prime \prime} \times 9^{\prime \prime}$ including terminals Brand new. $\mathbf{£ 1 5 0 s . 0 d}$ plus $\mathbf{£ 2}$ carriage. DAVIS DIMMER TRANSFORMERS Manufactured by Ariel Davis Mfg., U.S.A Input: 230v AC 60 cycle
Maximum overall rating amps-26.
Variable outputs Type 1
$6.5 v \times 3 ; 13 v \times 1 ; 26 v \times 2$.
$19.5 \mathrm{v} \times 3$; $13 \mathrm{v} \times 1$. Only 2 of each type
All outputs and inputs have resetable
circuit breakers. Ex-equipment but fully tested. £1710s. Od. each £2 10 s , 0 d . carriage mainland only.
Size $21^{\prime \prime} \times 10 \frac{1}{2} \times 8^{\prime \prime}$
GARRARD 2 TRACK TAPE DECKS MAG TYPE
Solenoid operated $230 \mathrm{v} .1 / \mathrm{zips} 50 \mathrm{v}$ Solenoid Ideal for contin. tape players etc.
£710s. Od. each. Brand new in manufacturers cartons. pp 22/6d.
OMRON MIDGET POWER RELAY
Type MK1 230v AC. New 9/6d. each pp. 1/6d.
TELESCOPIC AERIALS CHROMED
$7^{\prime \prime}$ closed $28^{\prime \prime}$ extended. 6 section
Ball jointed base $4 / 6 \mathrm{~d}$. each pp. $1 / 6 \mathrm{~d}$. New
4 MULLARD DM160 INDICATORS
Size approx. $1 \frac{13}{3} \times 11^{\prime \prime} \times \frac{1}{2}$ in plastic holder ;
green plastic cover ex-equipment
$7 / 6 \mathrm{~d}$. complete pp. $1 / 6 \mathrm{~d}$.
VIBRASHOCK EQUIPMENT MOUNTS
Made by delaney gallay
Type 7002-R2 45-75Ibs.

CERAMIC STEREO CARTRIDGE
Output $135 \mathrm{~m} / \mathrm{v}$ at $1 \mathrm{~cm} / \mathrm{sec}$.
Freq. response $40-12000 \mathrm{cps}$. Load 1 meg Separation better than 15 db .
Tracking weight 5-6 grams.
30/.. pp 2/6.
MALLORY ELECTROLYTICS
25,000, MFD 25 v DC $\quad 55.000$, MFD 15 v DC $\begin{array}{lllll}25,000, & 10 \mathrm{vDC} & 27,000, & 15 \mathrm{v} \text { DC } \\ 20,000, & \text {., } & 30 \mathrm{v} \text { DC } & 59,000, & \text { ", } 76 \mathrm{v} \text { DC }\end{array}$ $\begin{array}{llllll}20,000, & \text { ". } & 30 v D C & 59,000, & 76 v & \text { DC } \\ 37,500, & 15 v D C & 32,000, & \text { ". } & 25 v D C\end{array}$
All at 10/- each. pp 2/6. Screw terminals.
POWER SUPPLIES
AC INPUT 200-250v;
20 v 4.5 Amp; 10 v 3 Amp; 10 v 300 MAmp. DC f15 0. 0. pp. 30/-
Toggle Switches, single pole, double throw Ex-equip. New condition.
10/- doz. pp. 2/6.

3 SHENLEY ROAD, BOREHAMWOOD, HERTS.
Adjacent Elstree Malntine Statlon. Callers wetcomed

WW-128 FOR FU'RTHER DETAII.S

surpiats Batrains

 No. 19 Mk . III CANADIAN TRANSCEIVERS | variometer, control boz and aeriala. 222.10.0. Carr. $50 /-$. |
| :--- |
| R. 41 RECETVER LF Veralon of B. 40 . Coversge $15 \mathrm{Kc} / \mathrm{a}-700 \mathrm{Kc} / \mathrm{a}$. |

II Communiahtion 11 ralve. Covero 1.20
Ins. AM/FM. CW. BFO.

TELE F'FIELD TELEPHONES. Communica. thon up to 10 milies.
Tested. with batterfes.
e5.15.0. pait, Carr. 201-.

ons Mon.-Fri., 8-12 Sat.

A.J.THOMPSON (Dept. W)
"Eling Lodge," Codicote, Hutohin. Herts. Pbone: Codicote 242

EXCLUSIVE OFFERS
 LATEST TYPE HIGHEST QUALITY CABINETS

FOR STANDARD $19^{\prime \prime}$ RACK PanELS TOTALLY ENCLOSED
 TYPE $A: 4^{4 *}$ high
$\times 24^{\circ}$ deep $\times 24^{\circ}$
 WOUBLE SIDED take rack panel take rack panel
both aidec, thut
back and front and back and front and
are drilled and
and
tapped all the way tapped all the wsy
dowa every for
thls purpoie. They
 fully ndfustahle
racis mounts which rack mounta whict
are rertically and
horizonally horizontally adjart
able these allow
the the panols to be
receased when they are nitied rith pro-
jecting componemte
and it 19 desired to enclose then by
doors.
tother features include-all corners and edsea rouniled Interior fithiags tropicalised. Removable built in cable insect proofed tops. Detachable slde panele. Fuil length isstantly detachable doora fitted expanding bolta Government $£ 107$ before devaluation. Finlshed in gres primer and in new condition

PRICE ER6.10.0 oxoh (Cerriape extra)
Doorn are not needed if panels are mounted back and tront and they are Dot required to be enelosed,
TYPE $\mathrm{C}: 80^{\circ}$ high $\times 27^{\circ}$ deep $\times 22^{\circ}$ wide. Americm 8eandard Firat Grade totally onclosed ventiated 19 rack open froat fittod rack morunts drliled and tupped all the Fiy down cyery ${ }^{\text {t". Pull leagth rear door with latch. }}$ gnod conditlon but it decoration ia of importance it is recormenended they aro re-sprayed before use.
TYPE D: 76° RISE 215.0.0 each (Cartiage extr)
TYPE D: 76° high $\times 18^{\circ}$ dape $\times 22^{\circ}$ wide. These are elimilar in conntruction and condition to Type C abore Made by R.C.A. of U.8.A. PRICE E12.10.0 enoh (Carriake extra)
TTPE E: $8^{\circ} \mathrm{high} \times 1 \mathrm{in}^{\circ}$ deep $\times 22^{\circ}$ wide, totally caclosed ventilated rack mounllog cahinete made by Motorola, U.S.A. Theee unite have front and rear doora and rack mounts intemally recessed within the cablinet, The mack mount are etandard 10° Nide. The metund momit panse able glazed puncl. PRICE 29.10.0 each (Czrriase extra)
TRANSPORT: We have made speciml economical tranport arrangements for theze cabineth io ening.
undamaged and to avold erpensive cratiog.

40-page lint of over 1.000 diferent Jtems tim stock avalable-keep one by you.	
romex A.C. 7 Voltage Regulators up to 0	
R.C.A. $480 \mathrm{~m} / \mathrm{es}$ 5-element Yagi crrays ${ }^{\text {c }} 310$	
3M Secretary Photo Copiert	
${ }_{\text {t }}^{\text {t Merox }} 1385$ Photo Coplern	
*E.M.I. (U.S.A.) Finest Quality Compater Gepes miteble fideo wort. $2400 \mathrm{\$ t}$. spooled	
and ln tranaparant outer plantio carie......	240
* 10 toot long $6^{\text {a }}$ aides Trimakular Lattiee Steel	
up to 200 feet. New condition........... ${ }^{\text {a }} 7$	
*Collins R-380 Commanication Reoeivers	
$0.5 / 30.0 \mathrm{~m} / \mathrm{cs}$ t Hoftman CV-157 isB 88 BB Convertern...... 2200	
¢ Mapkay 188 AY L.F. Recelvers 16/800 K Ce. .	
*TT-63 Telegraph Repenters. *Candlettick microphones whth push to talk	
* Latsice lightweight ateel triangular Aerial	
Masts 12 to 16 inch sides up to 200 tt . hirh According to heirks	
WANTED II VIDEO TAPE Good price paid	
lug boands	
太E.M.I. WM-3 Moasurink Oscilloscopes...... £32 10	
χ^{+}New Magnetio Recordink Tape made by	
E.M.L. (USA) 3600 fi on N.A.B. Spools....	
* 1° Ured ditto "Sooteb" Brand 4800 ft.	
BARGAIN FOR THIS MONTH ONLYAMMETERS $2 i^{\circ}$(acaled$0-125$m/y)	
32.6 each.	
t ${ }^{8}$ Treol Dats High Speed Tape Readers 8400	
$\chi^{\text {t }}$ Stelma Telegrapb Didiortion Monitors......	
A Fraiz Aurport "Weather M an" Masts......	
* Uaiselectors 10 bank 25 way tull wipe ox,	
- Precision Maina Filtor Dnito new	
Carriage extra at cont on all above.	
We have a targe quantity of "bita and pleces" We cannot liat-plesse send us your zequirements	
ORGANFORD BHIGGR DORSET WESTBOUREE 65051	

GONOON CENTRAG mome

ELECTRICITY SLOT METER ($1 / \cdot \operatorname{In}$ sJot) for A.C. malns. Pized $10 \mathrm{~A} .80 / \mathrm{F}, 15 \mathrm{~A} .80 /, 20 \mathrm{~A} .100 / \%$ P.P. $7 / 6$. Other amperage avallable. Reconditloned as Dew, 2 years' guarantee. WIRELEES sET No. 38 A.F.V. Freq. Fange 7.3 to $9.0 \mathrm{Me} / \mathrm{s}$. Work
 tank aerisl with bawe. $£ 8$ per pair or $£ 4$ single. P.P. $25 /-$. MODERN DESK PHONES, red, green, blue or topax, 2 tone arey
$\mathbf{8 4} / \mathbf{1 0 / - ,}$ P.P. P. $7 / 6$.
\&4/10/-, P.P. 7/8.
10-WAY PRESS-BUTTON IMTER-COM TELEPRONES In Bske-10-WAY PRESS-BUTTON INTER-COM TELEPRONES In Bske Guaranteed. $86 / 10 /$ - per nint.
20-WAY PRESS-BUTTON INTER-COM TELEPHONES in Bake itte cane with Junctlon box. Thorougbly overbauled. Guaran teed. e7/15/-per unit.
TELEPHONE COLLED HAND SET LEADS, 3 core, 5/6. P.P.1/QUARTERLY ELECTRIO CHECK METERS. Recoaditione as new. $200 / 250 \mathrm{~V} .10$ A. $42 / 8 ; 15$ A. $52 / 6 ; 20$ A. $57 /$. Othe 8-BANK UMISELECTOR SWITCHES. 25 contacte aiternate
 26 contacts 47/8. P.P. 3/8. FINAL END SELECTORS. Relay, variou callere also 10 23 LISLE ST. (GER 2969) LONOON W.C. 2 Closed Thursday 1 p.m. Open all day Saturday

"SPECIAL OFFER"

Ultra radios requirlng attentlon to clear from £4.0.0 each, callers only. 10 watts, prov. for mic. Suli small factory, public address. Sid, play Prof. Scorch Boy \}" recording tape. (Low noise.) Used once only. Approx. 2,500 h. 19/6. List Price £4.0.0. Zonal rape Prof, qualliy 2.500 tt . Sid. play. Diacetate base, new, in makers box, 35/-. P \& p 2/6. HARRINGAY PHOTOGRAPHIC LTD. 435 Green Lanes, London, N. 4 - 01-340 5241

WE PURCHASE

COMPUTERS, TAPE READERS AND ANY SCIENTIFIC TEST EQUIPMENT. PLUGS AND SOCKETS. MOTORS. TRANSISTORS RESISTORS, CAPACITORS, POTENTIO METERS, RELAYS TRANSFORMERS, ETC ELECTRONIC BROKERS LTD. 49 Pancras Road, London, N.W.1. 01-837 7781

AMERICAN
 TEST AND COMMUNICATIONS EOUPMENT * General Catalogue an/104 1/6 * manuals offered for most U.S. equipments
 SUTTON ELECTRONICS Salthouse, Nr. Holt, Norfalk. Cley 289

ENTHUSIASTS for tape recording subscribe to the only Magazine devoted exclusivaly to th subject.
25/- (U.S.A.) $\$ 3.75$ yrly. incl. postage.

- FREE SPECIMEN COPY ON REQUEST

7 ALVERSTONE AVENUE, EAST BARNET, HERTS.

TACHOS

TACHOMETERS TACHOGENERATORS

\star Very accurate-linearity 1\%
\star Bidirectional output
to $\frac{1}{4}$ of 1% tolerance

* Brush life $100,000 \mathrm{hrs}$. or 10 years continuous operation
\star Low driving torque
\star Temperature compensated
\star Ideal as speed transducers

NECO ELECTRONICS (EUROPE) LIMITED
 WALTON ROAD, EASTERN ROAD COSHAM PO6 1SZ, HANTS.

 Tel: COSHAM 71711/5. Telex. 86149WW-129 FOR FURTHER DETALLS

Inexpensive DTL

930 Series DTL ST 930 Dual 4-input gate 9/6 ST 936 Hex inverter 9/6 ST 945 Clocked R-S/J-K flip-flop 12/. ST 946 Quad 2-input gate 8/6 ST 951 Gated monostable 13/. ST 962 Triple 3-input gate $9 / 6$

For further information contact :

Simpson Taylor and Company Limited Bryans, Newtongrange, Dalkeith, Scotland

TRAIN TODAY FOR TOMORROW

Start training TODAY for one of the many first-class posts open to technically qualified men in the Radio and Electronics industry. ICS provide specialized training courses in all branches of Radio, Television and Elec-tronics-one of these courses will help YOU to get a higher paid job. Why not fill in the coupon below and find out how?

Courses include

- RADIO/TV ENG. \& SERVICING
- AUDIO FREQUENCY
- CLOSED CIRCUIT TV
- ELECTRONICS-
- ELECTRONIC MAINTENANCE
- INSTRUMENTATION AND CONTROL SYSTEMS
- NUMERICAL CONTROL

ELECTRONICS

- COMPUTERS
- PRACTICAL RADIO (with kits)

Guaranteed Coaching for

- C. \& G. Telecom. Techns' Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/TV Servicing Cert.
- Radio Amateur's Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education

WANTED RELAYS

1. GEC Sealed Type M1574, 12v, 180 ohms; 2. Ericsson or Plossey Tubular 48 vy , 1650 ohms. 3. Plessey or Ericsson Plug-in type $24 y, 670$ ohms with transparent cover, exactly 700 ohms. 5. Elliott Plug-in Type $9 \mathrm{M16} / 3507 \mathrm{~b}$ base.

PHONE ANY TIME: 021-454 8305

COMPONENT PARTS EX STOCK

FOR FOLLOWING HI FI DESIGNS
BAILEY, LINSLEY-HOOD,
TEXAS INSTRUMENTS
For list of parts and other information send S.A.E. to:
TELERADIO ELECTRONICS
325 FORE STREET, N. 9 B07 3719

GEARED MOTORS

Microswltches, Timers, Meters, Potentlometers, Capacitors, all new od, stomp for catalogue.
F. HOLFORD \& CO.

6 IMPERIAL SQUARE, CHELTENHAM

[^22]
BAILEY PRE-AMPLIFIER

High quality pre-amplifier ecircuit described by Or. A. R. Bailey in the December, 1966, "Wireless World". This is a low distortion elreuit of great versatility with a maximum output of 2 volts making it suitable for driving Bailey 20W and 30W Amplifiers, Linsley Hood Class A Amplifier and many others. All norma! pre-amplifier facilities and controls are incorporated. A new Printed Circuit Board containing nector mounting, roller tinned finish and silk sereened nector mounting, roler thinned finish and silk sercened material or fibreglass and the complete Kit for the unit contains gain graded BC. 109 transistors, polyester capacitors and metal oxide resistors where specified.

BAILEY 3OW AMPLIFIER

All parts are now available for the 60 -volt single supply rail version of this unit. We have also designed a new Printed Circuit intended for edge connector mounting. Thls has the component locations marked and is roller cinned for ease of assembly. Size is also smaller at $4 \frac{1}{2} \mathrm{in}$. by 2 in . Price in SRBP material $11 / 6 \mathrm{~d}$. in Fibreglass $14 / 6 \mathrm{~d}$.

BAILEY 2OW AMPLIFIER

All parts in stock for this Amplifier including specially designed Printed Circuit Boards for pre-amp and power amp. Mains Transformer for mono or stereo with blfilar wound secondary and speciat 218 V primary for use with CZ6 Thermlstor, $35 / 6 \mathrm{~d}$., post 5/.
Trifilar wound Driver Transformer, 22/6d., post $1 /$-. Power Amp. PC Board, $12 / 6 \mathrm{~d}$., post' 9 d .
Reprint of "Wireless World " articles, 5/6d. post free.

DINSDALE IOW AMPLIFIER

All parts still avallable for this design. Reprint of articles $5 / 6 \mathrm{~d}$., post free.

LINSLEY HOOD CLASS A AMPLIFIER
Parts now available for this unit including special matt black anodised Metalwork and all power supply

PLEASE SEND S.A.E. FOR ALL LISTS.

HART ELECTRONICS,

321 Great Western St., Manchester 14 The firm for quality.
Personal callers welcome, but please note we are closed all day Saturday.

BAKER 12 in. MAJOR $£ 8$

$30-14,500 \mathrm{c} . \mathrm{p}, \mathrm{s}$, , 12 in . double cone woofer and tweeter cone together wooler and tweeter cone together
with a BAKER ceramic magnet with a BAKER ceramic magnet
assembly having a flux density of 14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance 45 c.p.s. Rated 20 watts. Voice coils avallable 3 or 8 or 15 ohms. Price $£ 8$, Module kit, 30-17,000 e.p.s. Size $19 \times 12 \frac{1}{\mathrm{in}} \mathrm{in}$. wlth tweeter, crossover FI or PA instructions. Ideal for Post Free $\mathbf{1} 10.19 .6$ LOUDSPEAKER CABINET WADDING 18 in . wide, $2 / 6$ per ft. run. Post
 2/6 per order
ELECTRIC MOTORS
(120v. or 240 v . A.C.)

Clock wise I,200 R.P.M. off load Heavy duty 4 pole 50 mA . Spind $2 \frac{1}{2} \times 3 / 20 \mathrm{In}$. diameter. | Size $2 \frac{1}{2} \times 2+\times 1 \% \mathrm{in}$. |
| :--- |
| BARGAIN |
| PRICE |
| $17 / 6 \quad$ Pos | $\begin{array}{lll}\text { BARGAIN } & 17 / 6 \quad 2 / 6\end{array}$

TRANSISTOR AMPLIFIER WITH LOUDSPEAKER A solf-coneained portable mini p.a. system. Many uses-Parties, Baby Alerm.
Intercomp Talephone or Record Player Amplifier. Attractive rexine covered
cabinet size $12 \times 9 \times 4$ In.,
with powerful 7×4 in.
 One whtt power amplifier. new in Maker's carton with

the instant bulk tape
ERASER AND RECORDING HEAD DEMAGNETISER

200/250 A.C.
Leanet S.A.E.
$42 / 6$

all PURPOSE TRANSISTOR PRE-AMPLIFIER BRITISH MADE
9 -12v. and 200-300v. D.C. Operation, Size $11 \times 1 t \times 1$ in.
 RETURN OF POST DESPATCH - CALLERS WELCOME HI-FI STOCKISTS - SALES - SERVICE - SPARES radio component specialists 337 WHITEHORSE RDAD. GROYDON. Tel: 01-684 1665

WW-131 FOR FURTHER DETAILS

CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, S.E.I

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Rate: 8/- PER LINE. Averageseven words per line.
- Name and address to be included in charge if used in advertisement.
Box No. Allow two words plus $1 /-$
Charges etc., payable to "Wireless World " and crossed " Co."

Press Day 7th May for June 1970 issue.

NAME

ADDRESS

Please write in block letters with ball pen or pencil.
NUMBER OF INSERTIONS

WE BUY

any type of radio, television, and electronic equipment, components, meters, plugs and sockets, valves and transistors, cables, electrical appliances, copper wire, screws, nuts, etc. The larger the quantity the better. We pay Prompt Cash.

Broadfields \& Mayco Disposals, 21 Lodge Lane, London, N. 12

RING 4452713

4450749

Quartz

ACCURATE
RELIABLE

INDEX TO ADVEIRTISERS
 Appointments Vacant Advertisements appear on pages 119-134

	Page
Al Factors.	139
Acoustical Mfg. Co. Led.	31
Adcola Products Led.	ver
Adier, B., \& Sons (Radio) Ltd.	18
A.I.M. Electronics.	61
A.K.G. Equipment Led.	139
Amplivox Lid.	27
Ameronix.	139
Ancom Ltd..	36
Anders Electronics Lid.	
A.P.T. Electronics.	37
Associated Automation Lid	53
Associated Elec. Eng. Lid.	28
Ates Electronics Ltd.	60
Audio Eng. Ltd..	44
Bantex Lid..	58
Barnet Factors Ltd	59
Barrett, V. N.	138
Batey, W., \& Co.	63
Bentiey Acoustical Corporation Ltd	92
B.I.E.T..	13
Bi-Pak Semiconductors.	100
Bi-Pre-Pak Lid.	108
Black, J..	140
Bradley, G. \& E., Ltd	5,51
Britec Ltd.	32
Brown, N. C., Lid.	48
Bulgin, A. F., \& Co. Ltd	79
Butterworth \& Co. (Pub.) Ltd	37
Carr Fastener Co. Lid.	70
Cesar Products Ltd. (Yukan)	144
Chiltmead Lid..	105
Computer Training Product	52
Computer Weekly Year Book	58
Croydon Precision Instruments Lid. .	46
Dabar Electronic Products	140
Daystrom Lid.	29
Deimos Lid. . .	138
Diotran Led.,	139
Dixons C.C.T.V. Ltd.	10
Downside Equipment Co.	140
Drake Transformers Led.	33
E.B. Instruments	139
Electrical Remote Control Co. Led	74
Electronic Brokers.	7, 142
Electronic \& Elec. Trader Year Book	114
Electronics (Croydon) Ltd..	109
Electrosil Lid.	1,77
Electrovalue.	101
Electro-Tech Sales.	117
Electro-Winds Lid.	104
English Electric Valve Co. Lid.	5, 7, 9
Erie Electronics Lid..	8
Express/Audix Led.	52
Farnell Instruments Ltd.	39
Ferrograph, The, Co. Led	75
Field Electric Ltd.	39, 141
Fylde Electronic Laboratories	0
Garrard Engineering Ltd.	6
General Video Systems Lid.	44
Goidring Manufacturing Co. Ltd	18
Grampian Reproducers Lid. .	140
Greenwood, W., (London) Lid..	39

[^23]

ADCOLA PRODUCTS LTD. Adcola House, Gauden Rd. London S.W. 4 Tel: 01-622 0291/3 Grams: Soljoint, London Telex: Adcola London 21851

POST COUPON NOW FOROETALS OF OUREXTENSNE RANGE

 HIGH QUALITYAUDIO AIDS AND AGEESSORIIES

CLEANING KIIS

SIZE J

Bib Compact Tape Head Cleaning Kit
Cuts repair costs, ensures better recording and reproduction with either reel or cassette recorders. Kit comprises, bottle of Bib Tape Head Cleaner, non-flammable, 2 Blue Tape Head Applicator Tools, 2 White Tape Head Polisher Tools, 10 Applicator and Polisher Sticks, Cleaning Cloth, all in a plastic wallet. 9s 9d or 49p including p.t. (1s 11d)

SIZE B

Bib Stylus and Turntable Cleaning Kit
Essential for maintaining stylus and turntable free from dirt. Kit contains, special cleaning brush on free-standing base, absorbent cleaning cloth, bottle of approved, non-flammable, anti-static cleaner, with full instructions.
6s 10d or 34p including p.t. (1s 4d)

TAPE SPLICING \& EDITING

SIZE 23 Bib Tape Editing Kit

Essential for quick and accurate editing. Kit contains ($\frac{1}{4}^{\prime \prime}-6.3 \mathrm{~mm}$.) Tape Splicer, 12 Tape Reel Labels, Razor Cutter, Splicing Tape, Tape Marker, and instruction leaflet, all in a plastic wallet. 27 s 0 d or $£ 1.35$ p

SIZE 24

Cassette Tape Editing \& Joining Kit

A complete kit to enable cassette tapes to be edited easily, quickly and accurately. The kit comprises, Cassette Tape Splicer ($\frac{1}{8}{ }^{*}-3 \cdot 2 \mathrm{~mm}$.), 2 precision Tape Cutters, Tape Piercer, 10 self-adhesive Cassette and Container Labels, Reel of Splicing Tape, 3 Tape Winders and Removers (2 spares) instruction leaflet, in handy plastic wallet. 29s Od or $£ 1.45$ p

MODEL 20 Bib Recording Tape Splicer

For use with $\frac{1}{4}^{*}$ or 6.3 mm . recording tape of any thickness. Invaluable for accurate tape editing. Chrome finished clamps for holding tape for diagonal or butt splices. Special non-slip base, complete with razor cutter and instructions. 19s 6d or $97 \frac{1}{2} p$

RECORD \& TAPE CARE

SIZE S Bib 7" Record Wallet
Made in plastic. Holds a minimum of 10-7" records in their sleeves. A handy record tidy and carrying case.
5 s 4 d or $26 \frac{1}{2}$ p including p.t. (1s 2d)

SIZE N

Bib "Five" Tape Cassette Case
Made from extra strong P.V.C. Holds 5 compact tape cassettes in their containers, for quick storage and easy handling.

5s 11 d or $29 \frac{1}{2}$ p including p.t. (1s 9d)

SIZE 0

Bib 12" Record Sleeve Protectors
Keep record sleeves like new. Made of extra strong, clear plastic.
Pack of 5, 2s 6d or 12 $\frac{1}{2}$ p including p.t. (6d)

SIZE R

Bib 12" Record Covers

Shaped in non-static clear plastic. Protects records from grime and dust, saves record wear. Place one over each record after use.
Pack of 5, 2s 2d or 11 p
These self-adhesive title labels are printed in a form which makes them easy to complete to denote title, composer, date, type of tape, number. On backing paper in sheet form, so that the details may be completed by writing or typing.
SIZE T/1 Bib Reel Labels 20 labels 2 s Od or 10p SIZE T/2 Bib Tape Box Labels 20 labels 2s 0dor 10p SIZE T/3 Bib Cassette and Container Labels 20 labels $2 \mathrm{~s} \mathrm{0d}$ or 10 p

GENERAL MANIENANCE

MODEL 6

Bib Wire Stripper and Cutter
Fitted with automatic opening spring for quick flex and cable stripping, also cuts wire. Screw adjusts for different wire sizes. Plastic covered handles with locking ring. 8s 6 d or $42 \frac{1}{2}$ p

SIZE D Bib Flex Shorteners

Shorten without cutting, audio cables and flexes. Made of unbreakable plastic.

Pack of 4, 2s 6d or $12 \frac{1}{2}$ p

[^0]: Sankyo (Europb) Export und Import G.m.b.H.:
 4 Diisse!dorf. Bahnstraße 45-47, W. Germany.

[^1]: TELCON METALS LTD., Manor Royal. Crawley. Sussex.
 Telephone: Crawley 28800 Member of the BICC Group of Companies.

[^2]: To Peak Sound, 32 St. Jude's Ad., Englefield Green, Egham, Surrey.
 Details of Englefield systems etc., please and

 ## Name

 Address

 Write your sfockists name and address in margin below and cut out with coupon if necassary

[^3]: To: Computer Weekly Yearbook, IPC Business Press (Sales and Distribution) Lid 40 Bowling Green Lane London EC1. Tel : 01-837363E
 Please invoice me for
 £2 a copy (postage extra)
 NAME (please print)
 COMPANY
 ADDRESS

[^4]: Tel: Cleckteaton (OWR62) 2501
 J. E. SUGDEN \& CO. LTD., BRADFORD ROAD, CLECKHEATON, YORKS.

[^5]: | 0 | | |
 | :---: | :---: | :---: |
 | \square | $\square 几$ | |

 ELECTRONICS
 The River Mill
 St lves, Huntingdon
 048062901 telex 32223

 ## AIM GROUP

 Innovation through research

[^6]: I.P.C. Electrical-Electronic Press Ltd

 Managing Director: Kenneth Tett Editorial Director: George H. Mansell Advertisement Director: George Fowkes Dorset House, Stamford Street, London, SE1 (C. I.P.C. Business Press Ltd, 1970

 Brief extracts or comments are allowed provided acknowledgement to the journal is given.

[^7]: Overseas; 1 year $\mathcal{K} 0 \mathrm{~s}$ Od. (Canada and U.S.A.; $\$ 7.2$). 3 years $\ell 713 \mathrm{~s} 0 \mathrm{~d}$. (Canada and U.S.A.; \$18.50). Second-Class JUBI.IN//:/) MONTHLY (3rd Monday of preceding month). Telephone: 01-928 3333 (70 lincs). Teleprums/Telex: Wiworlil lliffepres 25137 London. Cables: "Ethaworld, London, S.E.1." Anmual Subscripions: Home: 17 Os Od. mail privileges authorised at New York N.Y. Subscribers are requested to notity a change ot address four weeks in advance and to return wrapper bearing previous address. BRANCH OFFICES: BIRMINGHAM: 202, Lynton House, Walsall Road, 22b. Telephone: 021-356 4838. BRISTOL: 11, Elmdale Road, Clifton, 8. Telephone: OBR2 21204/5. GLASGOW: 2-3 Clairmont Gardens, C.3. Telephone: 041-332 3792. MANCHESTER: Statham House, Talbot Road, Stretford, M32 OEP. Telephone: $061-872$ 4211. NEW YORK OFFICE U.S.A.: 205 East 42 nd Street, New York 10017. Telephowe: (212) 689-3250.

[^8]: **More on Demonstrating Rectifier Action in Slow Motion'", Wireless World, March 1969, p. 133

[^9]: *Our hard-of-hearing contributor's April article brought forth a number of suggestions similar to this one-ED.

[^10]: * See "News of the Month", Wireless World, p.69, April, p.263, August, p.402, November 1968 and p. 210 . May 1969.

[^11]: Racal Electronics
 Radiatron
 Rank Xerox
 Recording Designs
 Recording Designs
 Reinach Automation
 Reinach Automation
 Reliance Gear Company
 Research Instruments
 Reyrolle Parsons

[^12]: - Abbreviation for Ministry of Posts \& Telecommunications suggested by the Minister, Mr. John Stonehouse.

[^13]: *On the other hand, Thomas Roddam may be pleased to know that the staff member concerned recently had his hot-water central heating system re-designed by a heating engincer whose regular practice is to think in electrical circuit analogues.-Editor.

[^14]: The Solartron Electronic Group Ltd Farnborough Hampshire England Telephone 44433

[^15]: - Royal Radar Establishment

[^16]: \dagger This is true when $A \rightarrow \propto$, even when the input impendance of the amplifier is not infinite, since zero voltage drives zero current through a finite impedance.

[^17]: * Also we neglect practical points such as correct biasing and the position of the h.t. battery.

[^18]: 7704 Oscilloscope
 £1,167
 7504 Oscilloscope
 £933
 7411 Amplifier Plug-in £397
 7A12 Amplifier Plug-in £327
 7A13 Amplifier Plug-in £513
 7A14 Amplifier Plug-in £268
 7416 Amplifier Plug-in £280
 7A22 Amplifier Plug-in £233
 7B71 Time-Base Plug-in £320
 7870 Time-Base Plug-in £280
 7B51 Time-Base Plug-in £238
 7850 Time-Base Plug-in £210
 7 S11 Sampling Plug-in £210
 $7 T 11$ Sampling Time-Base Plug-in £513 7M11 Dual Delay Line Unit £117
 204-2 Scope-Mobile (B) Cart $£ 85+£ 11.6 .0$ duty
 C-51 Trace-Recording Camera
 $£ 427+£ 97.4 .0$ duty
 C-50 Trace-Recording Camera
 $£ 333+£ 75.16 .0$ duty
 P6052 or P6053 Probes
 $£ 24+£ 3.8 .0$ duty Delivered U.K.

[^19]: MARCONI
 TF885 VIDEO OSCILLATORS
 $0-5 \mathrm{mc} / \mathrm{m}$ Blne Bquare Wave £45. Carr. 20
 MARCONI TFI95M BEAT
 FREOUENCY OSCIILATORS FREQUENCY OSCILLA

[^20]: Computicket is now implementing its entertainment seat-booking system. This service. which operates in real-time. will ultimately involve hundreds of on-line CRT Terminals, sited in a wide variety of public places.
 Computicket is now recruiting Maintenance Technicians based in the London Area 10 perfiorm a vital role in this exciting new service.
 Applicants should have had experience in the maintenance of Electro-mechanical and Electronic equipment situated in the field and should be happy to find themselves part of a technically advancing but nevertheless consumes orientated team.
 Salaries up to $\mathrm{fl}, 700$ are being paid. There are also posts vacant at senior level for ElectroEngineers with a broad design experience and leadership potential.

 Write for an application form 10:-
 Colin Roberts, Chief Engineer,
 Computicket Limited
 247 Tottenham Court Road, London W.C.1.

[^21]: FULL-TIME technical experienced salesman required for retall sales; write giving detalls of age, previous expertence, salary required to- The Manager, Henry's Radlo. Ltd.. 303 Edgware Rd.. London. W.2.
 A IRCRAFT RADIO/RADAR MAINTENANCE ENA GINEERS and MECHANICS with workshop experlence In Clvil and Military Alrborne Communications
 and Radar equipment. 3 weeks* holiday per year, penand Radar equipment. ${ }^{3}$ weeks holiday per year, pen-
 sion scheme. Apply: The General Manager, Alr Transport (Charter) (C.I.) Ltd., Willow Road, Colnbrook, Bucks. Tel. Colnbrook 2654.
 A RE YOU INTERESTED IN HI FI? If so, and you A have some experience of selling in the Retail Radio Trade, an excellent opportunity awaits you at Telesonic Ltd., 243 Euston Road, London, N.W.1. Tel. 01-3877467. [21 CLECTRONICS TECHNICIAN required for the conL struction and maintenance of an interesting range of electronic equipment used in the teaching and research laboratories of the Department of Zoology and Com parative Physiology. Salary according to age and
 ability on scale $£ 743-£ 1.047$ p.a. plus London Welght ing and possible £30 or $£ 50$ p.a. qualification award. Five day week. Four/flve weeks \&nnual leave. Pension Scheme. Letters only to Registrar (Z/T), Queen Mary College (University of London), Mile End Road E.1, stating full detalls of age, experience and present
 work.

[^22]: NEONS. PRINTED CIRCUIT BOARDS. INSTRUMENT CASES. MOULDED REED SWITCHES and PIDAM logic modules. CONTIL and BRIGHTLIFE products are all ex-stock. For details see January, February, April, 1970 issues, advertisements. For further detalls use reader service card. New list will receive these automatically. WEST HYOE DEVELOPMENTS LIMITED

 WEST HYDE DEVELOPMENTS LIMIIED,
 30 HIGH STREET, NORTHWOOD, MIDDX
 Telephone: Northwood 24941

[^23]: Printed in Oreat Britatn by Bouthwark Offeet, 25 Lavington Street, London, B.E.1, and Published by the Proprietors, I.P.C. Eleotaroal-Elvotronio Ppeas, Latp, Dorset House, Btamford St., London, S.E.1, telephon

 GUPPLY: This perlodical te sold subject to the following conditions, namely that it shall not, without the written consent of the publishers tirat given, be lent, re-sold, hired out or otherwine disposed of by way of Trade at a price in oxcess of the recommended maximom price abown on the covar; and that it anall not

